Atrial Fibrillation: Control of Rate and Rhythm in 2021

Jason G. Andrade

Cardiology and Cardiac Electrophysiology, Division of Cardiology, Vancouver General Hospital and Montreal Heart Institute Associate Professor, University of British Columbia; Assistant Professor, Université de Montréal Medical Chair, Heart Rhythm Disease, Cardiovascular Disease Network, Cardiac Services British Columbia, Canada Email: jason.andrade@vch.ca twitter: @drJasonAndrade

Disclosures

Consulting Fees/Honoraria:

• Bayer HealthCare; BMS/Pfizer Alliance; Servier; Medtronic

Research Grants:

- Canadian Arrhythmia Network, a Network of Clinical Excellence
- Heart and Stroke Foundation of Canada
- Michael Smith Foundation for Health Research
- Baylis Medical; Medtronic, Inc; Bayer HealthCare; BMS/Pfizer Alliance; Servier

Learning Objective

- Describe the role of rate and rhythm control for atrial fibrillation in patients with heart failure
- Understand the role of ablation procedures in heart failure

Conflict of Interest Disclosures

Grants/research support:

- Canadian Arrhythmia Network, a Network of Clinical Excellence
- Heart and Stroke Foundation of Canada
- Michael Smith Foundation for Health Research
- Baylis Medical; Medtronic, Inc; Bayer HealthCare; BMS/Pfizer Alliance; Servier
- Consulting fees:
 - Bayer HealthCare; BMS/Pfizer Alliance; Servier; Medtronic
- Speaker fees:
 - Bayer HealthCare; BMS/Pfizer Alliance; Servier; Medtronic
- Other:

Case Presentation

- 58M former professional athlete
- Presented with insidious onset of shortness of breath on exertion.
 - Previously attributed to "walking pneumonia"
- Seen by IM who diagnosed AF of unknown duration
 - ECG 2y prior was normal
- BMI 35; examination otherwise unremarkable

Case Presentation

- 58M former professional athlete
- Presented with insidious onset of shortness of breath on exertion.
 - Previously attributed to "walking pneumonia"
- Seen by IM who diagnosed AF of unknown duration
 - ECG 2y prior was normal
- BMI 35; examination otherwise unremarkable

- Investigations:
 - Stress Test
 - Stage IV Bruce protocol
 - Negative for ischemia (ECG and MIBI)
 - Resting HR 84 bpm; peak 183 bpm
 - Echo
 - Enlarged LV.
 - Global LV hypokinesis.
 - Biplane Simpson's LVEF = 25%.
 - Severe biatrial enlargement.
 - CCTA
 - No CAD

AF and Heart Failure:

Prevalence of HF in AF Trials

Ling, Nature Reviews Card 2016:13:131

AF and Heart Failure:

AF and Heart Failure:

80

HF / AF Management: Priorities

- 1. Treatment of co-morbidities
- 2. Volume management
- 3. Optimization of heart failure therapies
- 4. Rate versus rhythm control
- 5. Oral anticoagulation

HF / AF Management: Priorities

- 1. Treatment of co-morbidities
- 2. Volume management
- 3. Optimization of heart failure therapies

4. Rate versus rhythm control

5. Oral anticoagulation

¹See Figure 18 for long-term rate control ²See Figure 19 for long-term rhythm control

Canadian Journal of Cardiology 36 (2020) 1847-1948

Pharmacologic Rate Control

Pharmacologic Rhythm Control

Rate Control Via AVN ablation

AF Ablation

Pharmacologic Rate Control

Pharmacologic Rhythm Control

Rate Control Via AVN ablation

AF Ablation

AF-CHF Study

- 1376 patients paroxysmal/persistent AF, LVEF <35%, NYHA 1-4
- Mean follow-up: 37 months
- Reasonable medical therapy ACE-I, BB, & warfarin (>90%)
- 682 patients Rhythm-control with AAD (amiodarone 82%)
- 694 patients Rate-control (RHR <80bpm) with BB ± digoxin

RACE-II

- Lenient Resting <110 bpm
- Strict Resting <80; Ex <110

Achieved HR: 85±14 / 76±14 bpm

• Difference in HR was 9-11 bpm

RACE-II

- Lenient Resting <110 bpm
- Strict Resting <80; Ex <110

Achieved HR: 85±14 / 76±14 bpm

• Difference in HR was 9-11 bpm

RACE-II HF Substudy

• LVEF<40% + HF hospitalization + Symptoms of HF

AF-CHF Study

- 1376 patients paroxysmal/persistent AF, LVEF <35%, NYHA 1-4
- Mean follow-up: 37 months
- Reasonable medical therapy ACE-I, BB, & warfarin (>90%)
- 682 patients Rhythm-control with AAD (amiodarone 82%)
- 694 patients Rate-control (RHR <80bpm) with BB ± digoxin

Drug	Rhythm-Control Group (N = 682)	Rate-Control Group (N = 694)	P Value
	perc		
Amiodarone	82	7	< 0.001
Sotalol	2	<1	0.02
Dofetilide	<1	<1	0.62
Beta-blocker	80	88	<0.001
Digoxin	51	75	< 0.001
Verapamil or diltiazem	2	3	0.10
ACE inhibitor	81	82	0.41
ARB	16	13	0.09
ACE inhibitor or ARB	94	94	0.57
Diuretic	80	82	0.37
Aldosterone antagonist	47	49	0.51
Oral anticoagulant	88	92	0.03
Aspirin	34	31	0.31
Lipid-lowering drug	44	46	0.61

AF-CHF + AFFIRM Study

- All-cause mortality in patients with and without beta-blockers
 - A) matched cohort
 - B) matched patients with a high AF burden
- Mortality reduction not modulated by AF
 - Type of AF (i.e., paroxysmal or persistent)
 - Proportion of time spent in AF
 - Time since first diagnosis

JACC Heart Fail . 2017 Feb;5(2):99-106.

Pharmacologic Rate Control

Pharmacologic Rhythm Control

Rate Control Via AVN ablation

AF Ablation

Class Ic Flecainide Propafenone

Class III

Amiodarone Dronedarone Sotalol Dofetilide

Class Ic Flecainide Propafenone

Class III Amiodarone Dronedarone Sotalol Dofetilide

AF-CHF + AFFIRM Study

- amiodarone-treated patients (N = 1,107) vs. others
- Adjusted all-cause and cardiovascular hospitalization rates were similar with amiodarone versus rate control in all patients and in subgroups with and without severe left ventricular dysfunction
- Adjusted all-cause and cardiovascular mortality rates were similar with amiodarone versus rate control overall and in subgroups with and without severe left ventricular dysfunction.

Persistent AF 1.0 LVEF<40% NYHA II-III 66% Ablation All with DDD ICD or CRT-D Group 1 (catheter ablation, n=102) 0.8 Mean AF duration 8.5 months 9.0 Free AF/AT Ablation Amiodarone Proportion .4 Group 2 (amiodarone, n=101 Log-rank p < 0.0001 2nd ablation 30% 10% allowed in 3 discontinued Amiodarone 0.2 month blanking side effects 0.0 Number of Subjects at Risk 102 92 79 78 72 71 75 Group 1 Group 2 66 43 41 38 36 101 34 1° freedom AF/AFL/AT >30s 6 12 18 24 30 36 0 26 ± 8 months f/u Time to Recurrence (month)

N=

203

Primary Endpoint

Adjusted HR 2.5 (95% CI 1.5-4.3)

Adjusted HR 2.5 (95% CI 1.5-4.3)

Secondary Endpoints

- Fewer unplanned hospitalization in ablation group (31% vs 57%, p<0.001, RRR 0.55 CI 0.39-0.76)
- Fewer deaths in ablation group (8% vs 18%, p<0.037, RRR 0.44 CI -0.20-0.96)

Pharmacologic Rate Control

Pharmacologic Rhythm Control

Rate Control Via AVN ablation

AF Ablation

Catheter Ablation

CASTLE-AF

- Included:
 - paroxysmal or persistent atrial fibrillation
 - absence of response to, unacceptable side effects from, or unwillingness to take antiarrhythmic drugs
 - NYHA class II-IV heart failure
 - LVEF of 35% or less

End Point	Ablation (N=179)	Medical Therapy (N=184)	Hazard Ratio (95% CI)	P Value	
				Cox Regression	Log-Rank Test
	num	ber (percent)			
Primary†	51 (28.5)	82 (44.6)	0.62 (0.43-0.87)	0.007	0.006
Secondary					
Death from any cause	24 (13.4)	46 (25.0)	0.53 (0.32-0.86)	0.01	0.009
Heart-failure hospitalization	37 (20.7)	66 (35.9)	0.56 (0.37-0.83)	0.004	0.004
Cardiovascular death	20 (11.2)	41 (22.3)	0.49 (0.29-0.84)	0.009	0.008
Cardiovascular hospitalization	64 (35.8)	89 (48.4)	0.72 (0.52-0.99)	0.04	0.04
Hospitalization for any cause	114 (63.7)	122 (66.3)	0.99 (0.77-1.28)	0.96	0.96
Cerebrovascular accident	5 (2.8)	11 (6.0)	0.46 (0.16-1.33)	0.15	0.14

Catheter Ablation - HFrEF

7 RCTs (851 patients)

- Catheter ablation vs medical
- Mean follow-up 18 months

Outcomes:

- Improved LV function
- Increased 6-min walk test
- Improved peak VO2

Kheiri et al. Int J Cardiol 2018 Oct15 ;269:170-173

Catheter Ablation - HFrEF

- 7 RCTs (851 patients)
- Catheter ablation vs medical
- Mean follow-up 18 months

Outcomes:

- Improved LV function
- Increased 6-min walk test
- Improved peak VO2
- Lower HF hospitalization rates
- Reduced all-cause mortality

	Catheter ab	lation	Control			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Heart failure ho	spitalization							
CASTLE-AF 2018	37	179	66	184	47.2%	0.58 [0.41, 0.81]	2018	3
CAMERA-MRI 2017	0	33	2	33	0.6%	0.20 [0.01, 4.01]	2017	* • • • • • • • • • • • • • • • • • • •
AATAC 2016	32	102	58	101	51.1%	0.55 (0.39, 0.76)	2016	i 🛨
ARC-HF 2013	0	26	0	26		Not estimable	2013	3
MacDonald 2010	1	20	0	18	0.6%	2.71 [0.12, 62.70]	2010]
PABA-CHF 2008	1	41	0	40	0.6%	2 93 [0 12, 69 83]	2008	
Subtotal (95% CI)		401		402	100.0%	0.57 [0.45, 0.72]		•
Total events	71		126					
Heterogeneity: Tau ² =	= 0.00; Chi ² = 0	2.51, df =	4 (P = 0.	64); l² =	= 0%			
Test for overall effect:	Z= 4.68 (P <	0.00001)					
All cause mort	ality							
	anty 04	170	46	104	70.00	0.54 (0.04, 0.04)	204.0	
CASTLE-AF 2018	24	179	40	184	13.2%	0.54 [0.34, 0.84] Not optimoble	2018	
	0	33	10	33	22.00	NUL estimable	2017	
AATAC 2016	8	102	18	101	23.8%	0.44 [0.20, 0.97]	2010	
CAMTAF 2014	U A	20		24	1.5%	0.31 [0.01, 7.23]	2014	
ARC-HF 2013	1	20	U	20	1.5%	3.00 [0.13, 70.42]	2013	
Subtotal (95% CI)	U	41	U	40	100 0%	0.52 (0.35, 0.76)	2008	
Total evente	22	407	65	400	100.070	0.52 [0.55, 0.70]		•
Hotorogonoity Tou? -	-000.⊂hiz=/	1 40 df-	2/0 - 0	60\· 17 -	- 0%			
Heterogeneity: $Tau = 0.00$, $Cnr = 1.48$, $dr = 3$ ($P = 0.69$); $r = 0.%$								
restion overall ellect.	Z = 3.33 (F =	0.0009)						
								Favors Catheter ablation Favors Control

Kheiri et al. Int J Cardiol 2018 Oct15;269:170-173

Catheter Ablation - HFpEF

European Journal of Heart Failure (2021)

Catheter Ablation

CABANA

- Main study included:
 - ≥2 episodes of PAF or 1 episode of persistent AF in the 6 months prior to enrollment
 - suitable for ablation or drug therapy
 - age ≥65, or 18-65 and ≥1 risk factor for stroke

PER-PROTOCOL ANALYSIS

Composite endpoint of all-cause mortality, disabling stroke, serious bleeding, or cardiac arrest

TREATMENT-RECEIVED ANALYSES

	Ablation (N = 1307)	Drug (N = 897)	Hazard Ratio (95% CI)	P- Value
Primary Outcome	92 (7.0%)	98 (10.9%)	0.67 (0.50, 0.89)	0.006
Secondary Outcomes All-cause mortality	58 (4.4%)	67 (7.5%)	0.60 (0.42, 0.86)	0.005
Death or CV hospitalization	538 (41.2%)	672 (74.9%)	0.83 (0.74, 0.94)	0.002

Packer et al. JAMA 2019 ;321(13):1261-1274

Catheter Ablation

CABANA

(%)

- Main study included:
 - ≥2 episodes of PAF or 1 episode of persistent AF in the 6 months prior to enrollment
 - suitable for ablation or drug therapy
 - age ≥65, or 18-65 and ≥1 risk factor for stroke
- HF sub-study symptomatic NYHA ≥ Class II HF
 - 79% had an EF ≥50%, 11.7% 40-49%, 9.3% EF <40%

Primary Composite End Point (Death, Disabling Stroke, Serious Bleeding, or Cardiac Arrest) by Intention-to-Treat

All-Cause Mortality Kaplan-Meier Curves by Intention-to-Treat Among CABANA Heart Failure Patients

Pharmacologic Rate Control

Pharmacologic Rhythm Control

Rate Control Via AVN ablation

AF Ablation

AV Node Ablation

Pulmonary-Vein Isolation for Atrial Fibrillation in Patients with Heart Failure

Mohammed N. Khan, M.D., Pierre Jaïs, M.D., Jennifer Cummings, M.D., Luigi Di Biase, M.D., Prashanthan Sanders, M.D., David O. Martin, M.D., Josef Kautzner, M.D., Steven Hao, M.D., Sakis Themistoclakis, M.D., Raffaele Fanelli, M.D., Domenico Potenza, M.D., Raimondo Massaro, M.D., Oussama Wazni, M.D., Robert Schweikert, M.D., Walid Saliba, M.D., Paul Wang, M.D., Amin Al-Ahmad, M.D., Salwa Beheiry, M.D., Pietro Santarelli, M.D., Randall C. Starling, M.D., Antonio Dello Russo, M.D. Gemma Pelargonio, M.D., Johannes Brachmann, M.D., Volker Schibgilla, M.D., Aldo Bonso, M.D., Michela Casella, M.D., Antonio Raviele, M.D., Michel Haïssaguerre, M.D., and Andrea Natale, M.D. for the PABA-CHF Investigators*

RESULTS

BACKGROUND From Cardiovascular Associates, Elk Grove Pulmonary-vein isolation is increasingly being used to treat atrial fibrillation in pa-Village, IL (M.N.K.); Hôpital Cardiologique tients with heart failure.

symptomatic, drug-resistant atrial fibrillation, an ejection fraction of 40% or less,

tricular-node ablation with biventricular pacing; none were lost to follow-up at

6 months. The composite primary end point favored the group that underwent pul-

pacing; P<0.001), a longer 6-minute-walk distance (340 m vs. 297 m, P<0.001), and a

ABSTRACT

lu Haut-Leveque, Bordeaux, France (P.J., M.H.); Cleveland Clinic, Cleveland (I.C.. METHODS LD.B., D.O.M., O.W., R.S., W.S., R.C.S.); In this prospective, multicenter clinical trial, we randomly assigned patients with University of Foggia, Foggia (L.D.B.), Umberto I Hospital, Mestre-Venice (S.T., A.B., M.C., A.R.), Casa Sollievo della Sof- and New York Heart Association class II or III heart failure to undergo either pulferenza, San Giovanni Rotondo (R.F. D.P., monary-vein isolation or atrioventricular-node ablation with biventricular pacing, R.M.), Catholic University, Campobasso All patients completed the Minnesota Living with Heart Failure questionnaire (scores the Sacred Heart Rome, Rome (A.D.R., range from 0 to 105, with a higher score indicating a worse quality of life) and G.P.) - all in Italy; Royal Adelaide Hospi- underwent echocardiography and a 6-minute walk test (the composite primary end tal. Adelaide. Australia (P. Sanders): Institute for Clinical and Experimental Medi- point). Over a 6-month period, patients were monitored for both symptomatic cine, Prague, Czech Republic (J.K.); Sutter and asymptomatic episodes of atrial fibrillation. Pacific Heart Centers, San Francisco (S.H., S.B.); Stanford University Medical Cen-ter, Stanford, CA (P.W., A.A.-A., A.N.); In all, 41 patients underwent pulmonary-vein isolation, and 40 underwent atrioven-Klinikum Coburg, Coburg, Germany (J.B., V S): and Texas Cardiac Arrhythmia Institute at St. David's Medical Center, Ausin and case Western Reserve University, monary-vein isolation, with an improved questionnaire score at 6 months (60, vs. Cleveland (A.N.). Address reprint requests 82 in the group that underwent atrioventricular-node ablation with biventricular to Dr. Khan at Cardiovascular Associates 701 Biesterfield Rd., Elk Grove Village, IL 60007, or at mnktx@yahoo.com

*PABA-CHF denotes the Pulmonary Vein ment of Atrial Fibrillation in Patients with Congestive Heart Failure study.

N Engl I Med 2008:359:1778-85.

1778

higher ejection fraction (35% vs. 28%, P<0.001). In the group that underwent pulmonary-vein isolation, 88% of patients receiving antiarrhythmic drugs and 71% of those PABA-CHF denotes the Pulmonary Vein Antrum Isolation versus AV Node Abla not receiving such drugs were free of atrial fibrillation at 6 months. In the group tion with Bi-Ventricular Pacing for Treat that underwent pulmonary-vein isolation, pulmonary-vein stenosis developed in two patients, pericardial effusion in one, and pulmonary edema in another; in the group that underwent atrioventricular-node ablation with biventricular pacing, lead dislodgment was found in one patient and pneumothorax in another.

Convight @ 2008 Massachusetts Medical Society CONCLUSION

Pulmonary-vein isolation was superior to atrioventricular-node ablation with biventricular pacing in patients with heart failure who had drug-refractory atrial fibrillation. (ClinicalTrials.gov number, NCT00599976.)

N ENGL | MED 359;17 WWW.NEJM.ORG OCTOBER 23, 2008

The New England Journal of Medicine

Downloaded from nejm.org at The University of British Columbia Library on October 17, 2019. For personal use only. No other uses without permission Copyright © 2008 Massachusetts Medical Society. All rights reserved.

- EF improvement
 - 76% with PVI
 - 25% with AVNA
- Mean LVEF increase
 - 8.8% in PVI
 - 1.1% in AVNA
- Increased 6 min walk distance with PVI
- Improved Quality of Life with PVI

AV Node Ablation

J Am Coll Cardiol HF 2013;1:500-7

Atrial Fibrillation: Control of Rate and Rhythm in 2021

Consider rhythm control vs. pacemaker implantation and AVJ Ablation⁶

- Beta-blockers are first line agents
- Rate control should target HR<100 <u>and</u> symptomatic improvement.
- CRT patients target is optimal CRT delivery

- Pharmacological Rhythm control options are limited in HFrEF patients
- Ablation may be preferred in patients with both HFrEF and HFpEF

Canadian Journal of Cardiology 36 (2020) 1847-1948