

THE NUTS AND BOLTS OF REAL WORLD IMPLANTABLE HEMODYNAMIC MONITORING

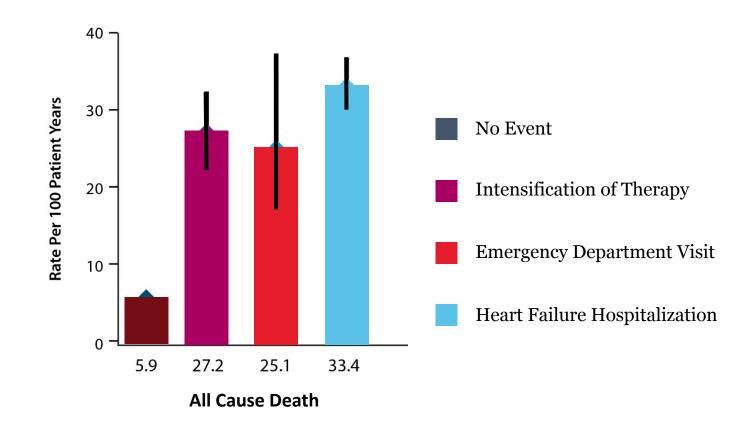
HEART FAILURE UPDATE 2019

Brian Clarke MD FRCPC FACC

Associate Professor, University of Calgary, Libin Cardiovascular Institute

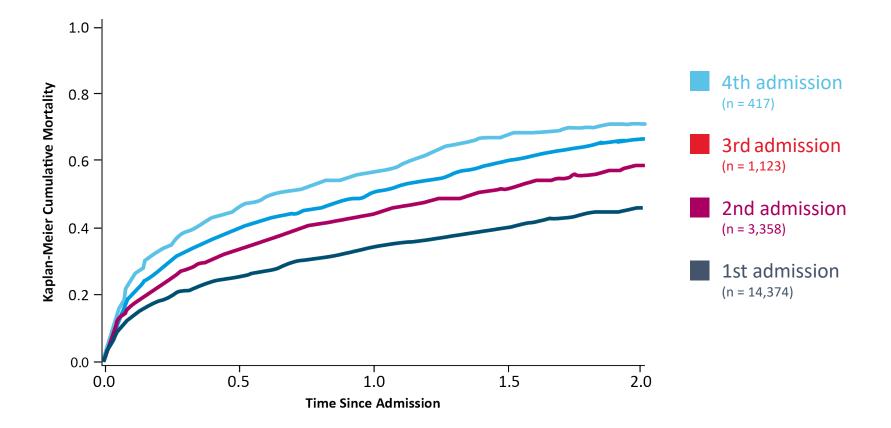
Disclosures

- Grants/research support: None
- Consulting fees:
- Speaker fees: Novartis, Servier, ABBOTT
- Other: None


Background

- Burden of heart failure is well known to this audience (as is the cost)
 - Modest prognostic improvement over the years
 - >\$2.8 billion/year¹
- The cost, morbidity and mortality of HF are intimately linked to hospitalizations ^{1,2}
- Hospitalizations represent the most severe form of decompensation and rehospitalization rates remain high
- >90% of hospitalizations arise due to congestion¹

- 1. Heart and Stroke Foundation of Canada: 2016 Report on the Health of Canadians
- 2. Circulation Heart Failure 2014;7(4):590-595


Decompensation Events Requiring More Intensive Therapy are Associated with Higher Mortality Risk

All decompensation events were associated with a statistically significant increase in mortality risk.

Long-term Mortality Risk Increases with Multiple Hospitalizations

Kaplan-Meier cumulative mortality curve all-cause mortality after each subsequent hospitalization for HF.

Setoguchi S, Stevenson LW, Schneeweiss S, Am Heart J, 2007;154:260-264.

Prior attempts of remote-monitoring in HF

Physical examination: low sensitivity, late signs Weight & symptoms or blood pressure:

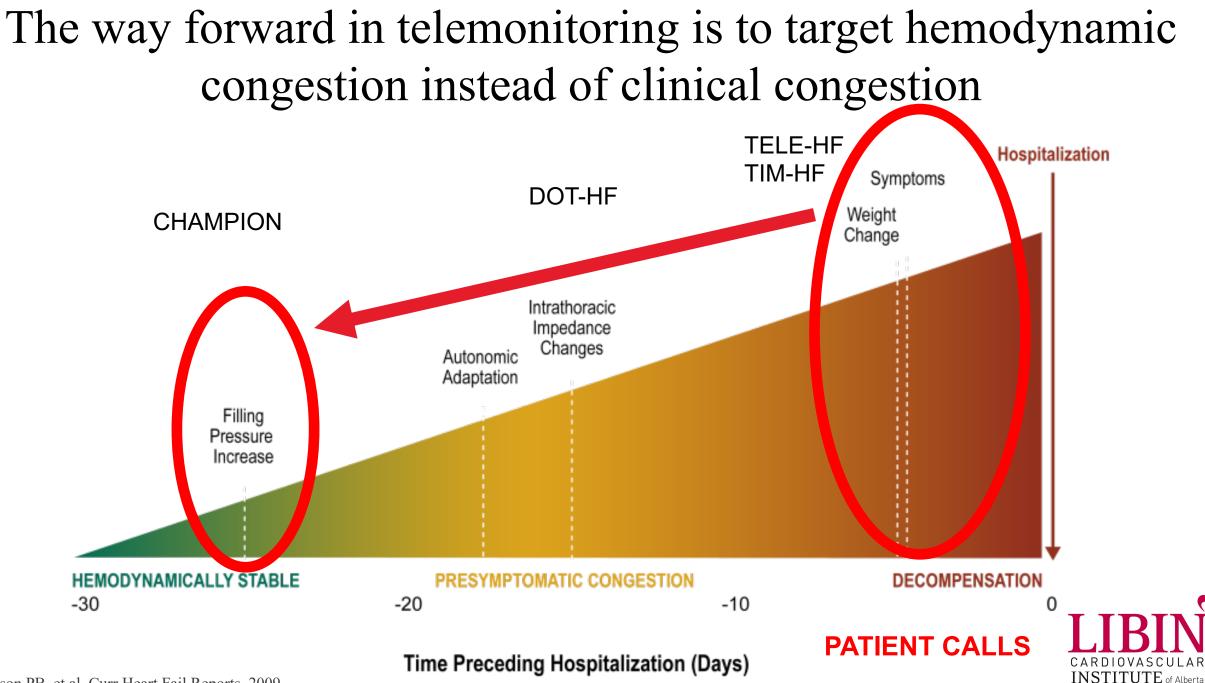
- TELE-HF trial: no effect on HF hospitalizations
 - Telephone based voice response system with higher risk population than TIM-HF
 - Adherence was poor
- TIM-HF trial: no effect HF hospitalizations
 - Bluetooth enabled device following BP, weight, 3-lead ECG
 - Low risk HF population

Intrathoracic impedance (optivol):

- DOT-HF trial: increase in HF hospitalizations
 - Chaudhry SI. et al. N Engl J Med. 2010.
- 4. Ong MK, et al. JAMA Intern Med, 2016.
- 6. van Veldhuisen DJ. et al. *Circulation*. 2011.

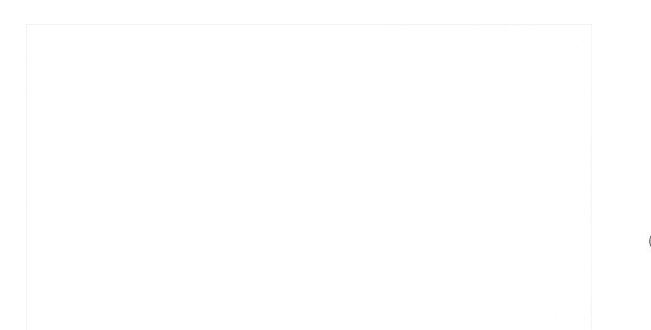
Cowie MR. ESC. 2016.

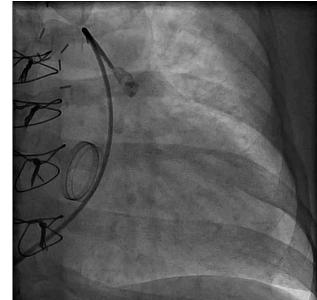
Koehler F, et al. Circulation, 2011.	•


• 5. Angermann DE, et al. Ci	rc Heart Fail, 2012.
------------------------------	----------------------

7. Brachmann J, et al. Eur J Heart Fail, 2011.	9. Boriani G, et al. Eur
--	--------------------------

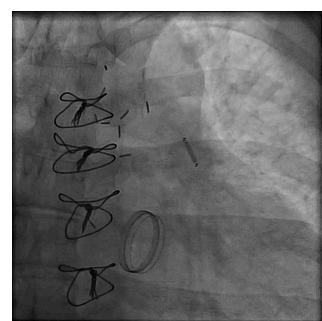
ur J Heart Fail, 2016.


TRIAL	N	PARAMETER MONITORED	IMPACT ON HF HOSPITALIZATION	JOURNAL
TELE-HF1	1,653	Signs/symptoms, daily weights	None	The New England Journal of Medicine, 2010
TIM-HF ²	710	Signs/symptoms, daily weights	None	Circulation, 2011
TEN-HMS ³	426	Signs/symptoms, daily weights, BP, nurse telephone support	None	Journal of the American College of Cardiology, 2005
BEAT-HF ⁴	1,437	Signs/symptoms, daily weights, nurse communications	None	American Heart Association, 2016
INH ⁵	715	Signs/symptoms, telemonitoring, nurse coordinated DM	None	Circulation Heart Failure, 2012
DOT-HF ⁶	335	Intrathoracic impedance with patient alert	Increased	Circulation, 2011
Optilink ⁷	1,002	Intrathoracic impedance	None	European Journal of Heart Failure, 2011
REM-HF ⁸	1,650	Remote monitoring via ICD, CRT- D or CRT-P	None	European Society of Cardiology, 2017
MORE CARE ⁹	865	Remote monitoring of advanced diagnostics via CRT-D	None	European Journal of Heart Failure, 2016
Total	8,793			

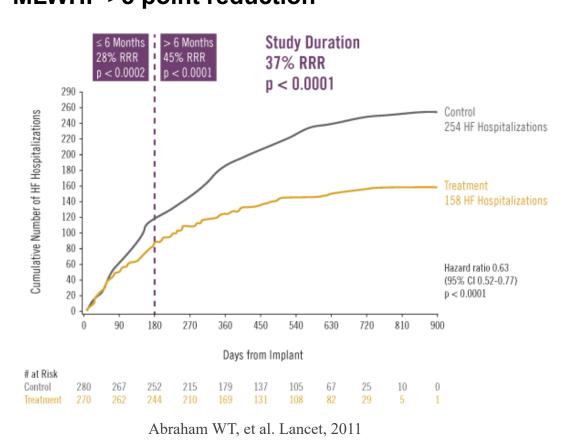

3. Cleland JG, et al. J Am Coll Cardiol, 2005

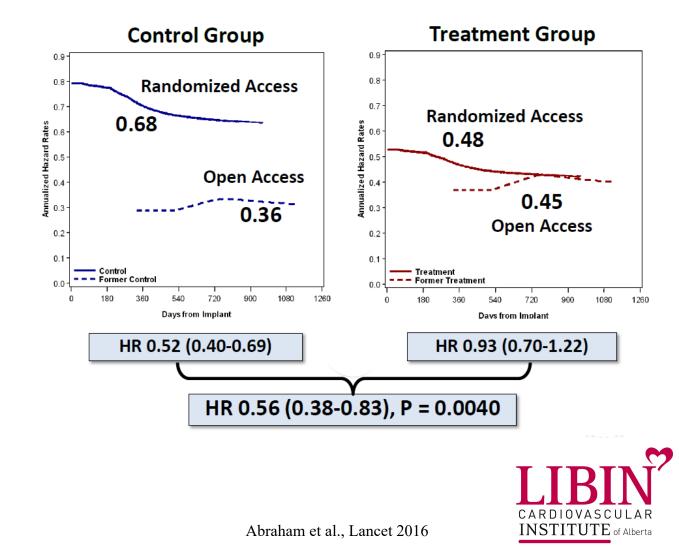
Adamson PB, et al. Curr Heart Fail Reports, 2009.

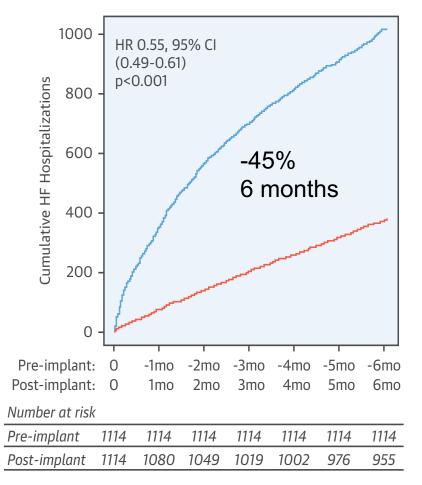
PULMONARY ARTERY PRESSURE MONITORING

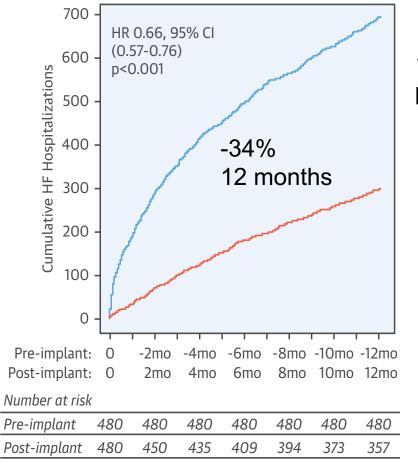


- Electrical resonance circuit sensor measures PA pressure
- Distension of the membrane corresponds to a pressure shift


(sPA, dPA)

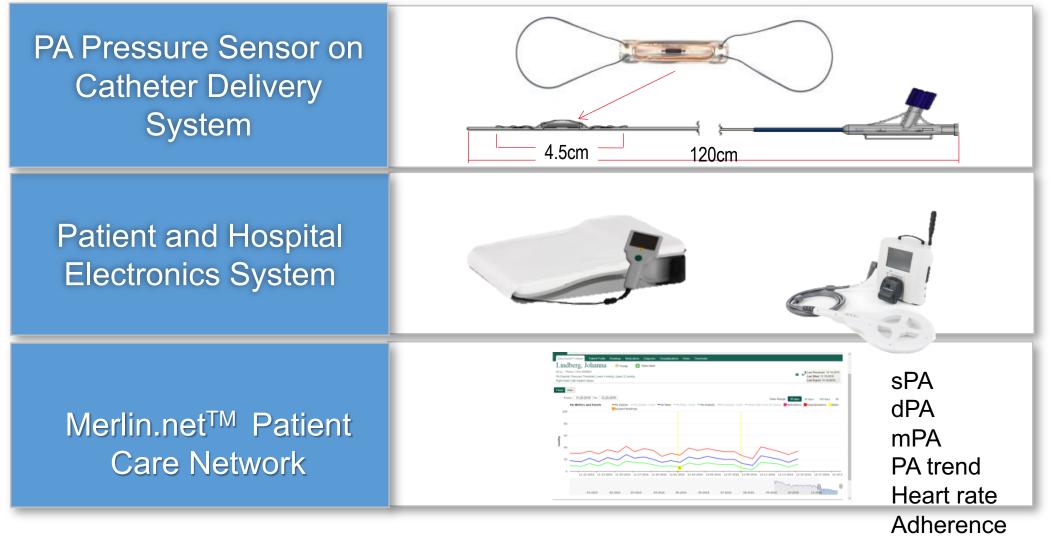

- No wires or battery
- Inserted via right heart cath
- Ideal target is left lower/posterior pulmonary artery
- Minor complications comparable to right heart cath
- Completely endothelializes with ASA/Plavix x 1 month, then ASA
- Systemic anticoagulation held and restarted (no ASA, Plavix)


CHAMPION Clinical Trial: PA Pressure-guided Therapy Reduces HF Hospitalizations


PA monitoring reduced HF hospitalizations by 37% (p<0.001) at mean 15 months follow –up NNT = 4 MLWHF >5 point reduction

CardioMEMS Real World Data

1114 Medicare patients


Desai et al. JACC 2017;69(19) 2357-2365

Pre-implant HFH — Post-implant HFH

Ambulatory hemodynamic monitoring added to standard care reduces HFH Real world safety and effectiveness comparable to trial data Further validates clinical trial evidence

CardioMEMS[™] HF System Overview

Aim: Maintain normal mean PA 10-25mmHg + euvolemia state Address accordingly with diuretics or vasodilators

IMPLEMENTING a CardioMEMS[™] HF System program:

Patient Selection

Health Canada

NYHA III

IRRESPECTIVE OF LVEF

Clinical congestion

Previous HF hospitalization

ALSO CONSIDER.....

Need to respond to diuretics Need to have blood pressure to work with Need to be compliant and adherent Avoid Stage D Heart failure - "end stage"

Calgary Invasive Heart Failure Monitoring Program

Inclusion

- NYHA III chronic HF on maximally tolerated medical therapy
 - HFpEF and HFrEF eligible; no LVEF requirement
- Hospitalization for HF in past 12 months

Considerations

- Ideally <u>></u> 2 hospitalizations in past 12 months
- Frequent outpatient diuretic adjustments (>2 per month for 3 consecutive months)
- Frequent decompensations requiring outpatient IV diuretics
- Difficult clinical volume assessment
- Geographic limitations impacting clinic access

Calgary Invasive Heart Failure Monitoring Program

Exclusion

- eGFR < 25ml/kg/m²
- Contraindication to Plavix + ECASA
- Health illiteracy
- History of non-compliance
- Inability to meet home technology requirements for remote transmission
- Active infection
- Recurrent PE
- Unable to tolerate right heart catheterization
- Mechanical right heart valves
- Known coagulation disorders
- Recent implant CRT <u>+</u> D (<3months)
- Chest circumference >165cm (axillary level)
- Numerous retained pacemaker leads

IMPLEMENTING a CardioMEMS[™] HF System program

- Identify Implant Workflow
 - Where
 - Heart Function Clinic at Foothills Medical Centre
 - All nurses educated
 - What:
 - Pre procedure education visit, consent procedure, baseline assessments
 - QoL, 6MWT, financial assessment, labs, CXR
 - Anticoagulation assessment
 - Cath Lab Team trained and dedicated. Post procedure patient education and transmission
 - Nurses and MD monitor pressures MERLIN.net
 - Baseline RHC to correlate PAd to PCWP

Optimization Phase

- Medication adjustments to achieve target PA pressures
 - Diuretics, vasodilators
- HF nurses contact patient with medication changes, arrange weekly labs during this phase
- Daily assessment of pressures/ Treat trends over 3 days
- Weekly team communication
- PA pressures incorporated into HF nurse workflow
- Target Goal PA Pressures:
 - PA Pressure Systolic 15 35 mmHg
 - PA Pressure diastolic 8 20 mmHg
 - PA Pressure mean 10 25 mmHg
- Maintenance Phase
 - Prespecified PA range can be set to deliver email notification ONLY when PA readings fall outside a certain range
 - Algorithms for nurse led management can be developed

34F with Shone syndrome

- Patch aortoplasty for coarcation age 5
- Bicuspid normally functioning aortic valve
- Mechanical MV replacement September 2015 (UAH) mitral stenosis
 - MVR 23mm On-X mechanical valve
 - Dysmorphous MV, hypoplastic aorta, well functioning bicuspid aortic valve
- Paroxysmal Atrial fibrillation
- Obesity
- Presented to Calgary transplant group for Heart Transplant, Heart/Lung
 - CPET submaximal: VO2 12ml/min/kg VE/VCO2 slope 50
 - TTE July 2018 LVEF 40% LVEDD 41mm, MV P/M gradients 33 / 9, PHT normal, HR76bpm, PHT, mild-mod RV dysfunction
 - Level 3 sleep testing–OSA confirmed initiated CPAP
 - Severe pulmonary HTN on previous cath

R+L with NO June 29 2018

40ppm NO

PA. 81/36/50mmHg

PCWP 41/71/42mmHg

CO/CI(TD) 3.96L/min CI 2.01L/min/m²

TPG 8 (owing to severely elevated PCWP)

PVR 2.02WU

BP128/64(88) mmHg

80ppm NO

PA 68/30(41)mmHg

PCWP 40/68/40mmHg

CO/CI(TD) 3.48L/min CI 1.77L/min/m²

TPG 1

PVR <1WU

BP 132/62(89) mmHg

PA 87/35/54mmHg

PCWP 32/40/32mmHg

RA 18/17/16mmHg

CO 4.26L/min CI 2.16L/min/m² (F)

3.83L/min CI 1.94L/min/m² (TD)

TPG 22 PVR 5.16 (F) 5.74 (TD)

SVR 1671 dynes*s*cm⁵

MV gradient : 11mg, MVA 1.16cm²

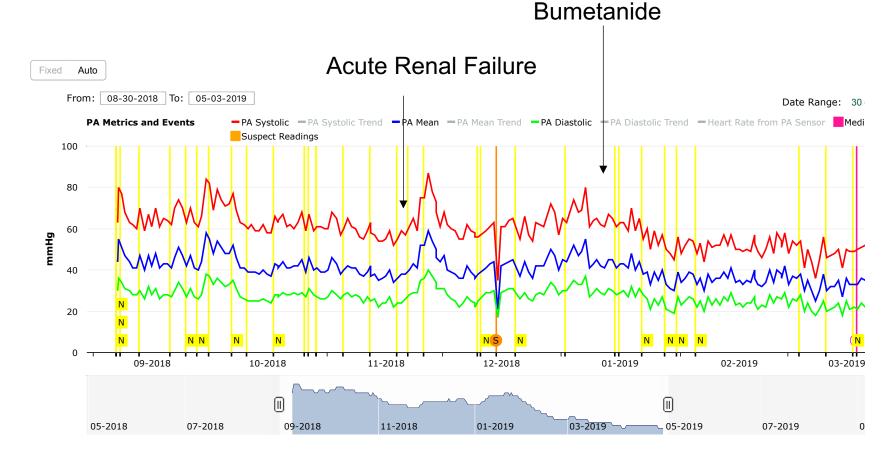
LVEDP 32mmHg

- Outpatient attempts at oral therapy optimization
- LVEF 40%, occluded Circumflex artery identified (likely occurred during surgery 2015)
- Symptoms improved from NYHA IV NYHA III
- Progress stalled after 2 weeks and admitted to hospital for inpatient treatment
- Admitted August 7 2018

Management options being considered

1) Heart Lung Transplantation

Young, VO2 concerning, PHTN Seemed a little aggressive this early on 2) MV excision with LVAD placement Small ventricle BTC by reducing pulmonary pressures? Seemed a little aggressive this early on 3) Continue attempts at medical optimization Is this MV really a problem??? ++++LVEDP, LVEF 40% by echo Is this all heart failure??


- CardioMEMS implant September 7 2018
 - PA: 65/<mark>29</mark>(43) mmHg
 - PCWP 27/38/27 mmHg
 - RA 14/12/10 mmHg

PAd is the target for therapy with CardioMEMS therefore correlation with PCWP at implant RHC is important in management goals

What we learned in 7 months

- CardioMEMS enables frequent medication changes
- Individualized therapy
 - ACEi, Entresto didn't improve much
 - Stalled on Lasix, spiro, zaroxlyn
 - Responded to nitrates, bumetanide, zaroxlyn, spironolactone
- Email communication with no clinic visits in 7 months
- NYHA II from NYHA IIIB
- 50% reduction in PA pressures
- VO2 max 12ml/min/kg VECO2 50 May 2018
- VO2 max 14.7ml/min/kg VEVCO2 36 January 2019
- VO2 max 15.5 ml/min/kg VEVCO2 33 May 2019
- Requires massive doses of diuretics
- May 2019
 - Coreg 12.5mg BID
 - IMDUR 240mg BID
 - Bumex 2mg BID EOD, 3mg/2mg EOD
 - Zaroxlyn 2.5mg EOD
 - Spironolactone 50mg BID

Patient JL

- 73year old female
 - Afib, Hypothyroid, HTN, dyslipidemia, nonsmoker, no DM, no known CAD
 - GI Bleed with NOAC (GI angiodysplasia on colonscopy)
 - Bronchiectesis 2018 with pseudomonas on bronchoscopy
 - OSA intolerant to CPAP
- Active independent complaint patient
- Lives in assisted living, drives and travels with her 'girls club'
- HFpEF diagnosed June 2016
 - SOB, clinical congestion with JVD
 - Echo
 - Normal LV systolic function
 - Mild LVH (septum 12mm). LV Mass 101.2g/m2
 - RV normal
 - No structural heart disease

Patient JL

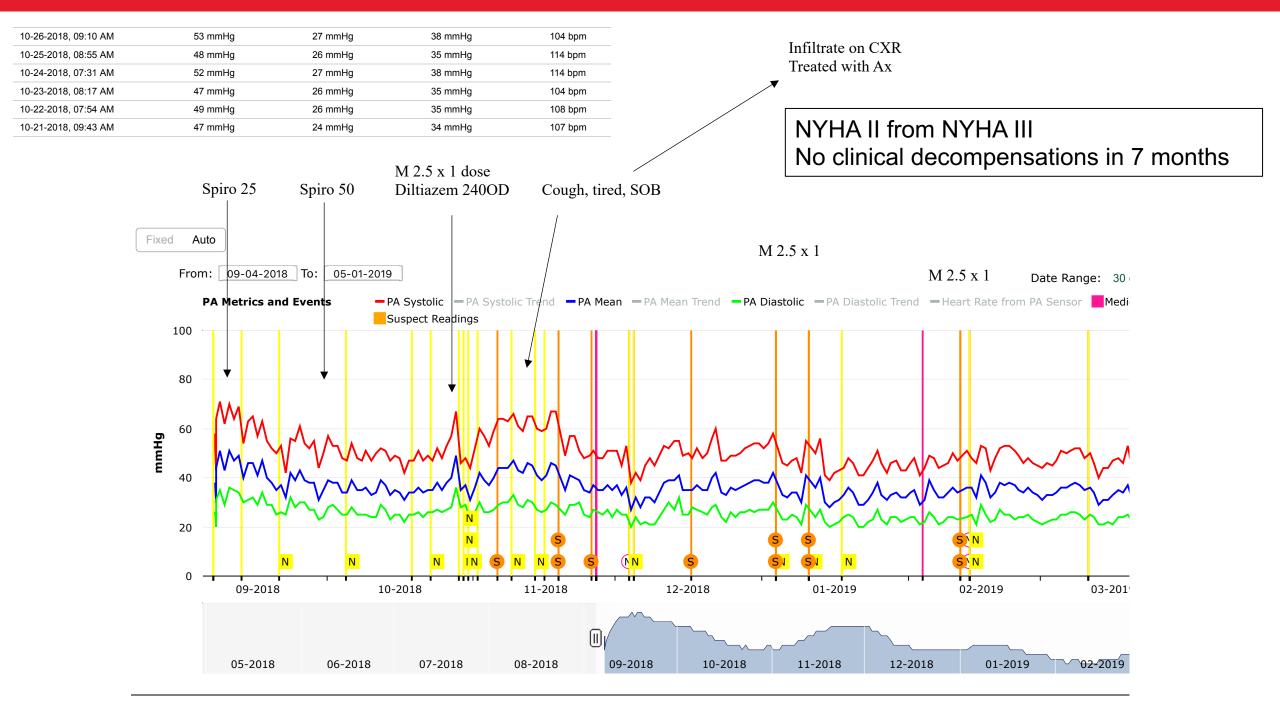
- 3 episodes of congestion in 2017 requiring intensification of diuretics
 - 1 requiring outpatient IV
- HR controlled by Holter monitor
- Persistent NYHA III symptoms 2018
- DC cardioversion for Afib March 2018
 - No effect on symptoms
 - Afib recurred 9 weeks later, left alone
- Pulmonary investigation for SOB/Abn CXR
 - Bronchiectesis with resultant moderate obstructive lung dz
- DOAC stopped due to recurrent GI bleeding
- Hospitalized May 2018 for ADHF

CardioMEMS implant September 7 2018

PA: 55/22(36)mmHg

PCWP: v25mmHg, mean18mmHg

RV: 58/3mmHg (edp 7)


RA: 8mmHg

CO: 4.3L/min CI: 2.5L/min/m²

TPG: 18 PVR 4.18WU

Plavix and ASA x 1 month – no GI bleeding

Benefits of PA pressure monitoring

- Takes the guess work out of things
- Personalize/tailor/individualize heart failure therapies
- Great opportunity to provide heart failure care to geographically remote/underserviced patients/areas
- Great for challenging patients
 - Difficult volume assessment, highly symptomatic with confirmed congestion, the cloud of comorbidities
- Perhaps the only intervention thus far demonstrating benefit for HFpEF
- COMPLIANT PATIENTS ARE KEY

Much to Learn...and Work Through

- Unlikely to be beneficial to a broad population of HF patients
 - Stable patients benefit?
- Cost!! Preventing HF hospitalizations may not be attractive business case.
 - "if a HF patient isn't in the bed, someone else is"
 - Expensive technology that is difficult to afford in our system
 - More outcomes data is needed
- How best to incorporate this in the Canadian Context

CardioMEMS in the Canadian Context

- Clearly improves HF management

Hemodynamic congestion precedes clinical congestion

Objective information to help tailor and individualize therapy

Effects of therapy can be seen within days

Patient engagement and self care

- Pressure feedback changes your practice
- Cost. Everything's expensive with fixed hospital budgets/Difficult administrative challenge. "If your heart failure patient isn't in that bed, another patient is...." Patient outcomes are priority.

- Who will MOST benefit

Remote Monitoring applied broadly to a patient population is unlikely to be beneficial (and certainly not cost-effective)

RPM should be:

1) targeted to at risk patients

- 2) used to directly improve patient care
- We need to work together to integrate this technology into our healthscape for the
 - betterment of our patients

THANK YOU!

