

Special Cardiomyopathies: Focus on Diagnosis

Friday May 13th 3:55 – 4:40 pm

Dr. Nowell Fine, Calgary, AB Dr. Elizabeth Swiggum, Victoria, BC Dr. François Tournoux, Montreal, QC

Conflict of Interest Disclosures

Dr. Nowell Fine

- Grants/research support: Pfizer, Akcealonis, Servier, Takeda, Novartis, Eidos
- Consulting/speaking fees: Pfizer, Akcea-Ionis, Sobi, Alnylam, Sanofi-Genzyme, Astra-Zeneca, Takeda

Dr. Elizabeth Swiggum

- Grants/research support: Astra Zeneca, BI, Novartis, Pfizer
- Consulting fees: BI, BI Lilly Alliance, Novartis, Servier, Bayer
- Speaker fees: Astra Zeneca, Bayer, Novartis, Pfizer

Dr. François Tournoux

- Grants/research support: Pfizer, Alnylam
- **Consulting fees**: Pfizer, Alnylam, Akcea-Ionis
- Speaker fees: Pfizer, Alnylam
- Other: Eidos

Objectives

Special Cardiomyopathies: Focus on Diagnosis

- Evaluate diagnostic algorithms for Fabry's, Sarcoid and Amyloid Cardiomyopathies
- Recognize other systemic manifestations of these cardiomyopathies
- Describe the imaging techniques which facilitate diagnosis
- Identify when endomyocardial biopsy is indicated

Cardiomyopathy #1

Nowell Fine MD SM Director of Echocardiography, Heart Failure Cardiologist Libin Cardiovascular Institute, University of Calgary

• 50 yo M

- PMHx kidney stones
- Fam / social Hx adopted, Caucasian, no smoking/EtOH/drug use, works from home

4 syncopal episodes in 4 weeks

- No prodrome, pattern, no associated symptoms, exercising regularly
- Called Fam MD office
 - Rx anxiolytic
 - Advised to hydrate well
- 1 week later, <u>2 syncopal episodes 3 hours apart at home</u>
- Presents to hospital in complete heart block

6 months ago

Presentation

Echo

• No significant abnormalities

Laboratory

- hs-Troponin-T 80 ng/L
- NTproBNP not done
- Other routine labs normal

Polling Question – Next Investigation?

- Electrophysiology study
- Cardiac MRI
- Genetic Testing
- Viral serology
- CT chest
- Cardiac biopsy
- Something else

CMR

• Extensive basal LGE

FDG-PET

• Extensive uptake

Diagnosis

- Cardiac sarcoidosis
- Extensive thoracic and abdominal lymphadenopathy and splenic involvement
- Endobronchial LN biopsy
 - Confirm non-caseating granulomas
- ICD-PPM
- Immunosuppression

FDG-PET

Thoracic lymphadenopathy

Sarcoidosis

- Granulomatous disease, often multisystem
- Prevalence ≈ 50/100,000
- Highest in northern European and African
- Age ≈ 25-60 years
- >90% pulmonary involvement

Exocrine Gland Swelling

Salivary, Parotid

Thyroid, Hypothalamus

Heart

Pulmonary

- Bilateral hilar lymphadenopathy
- Reticular
 opacities

Renal

Nephrocalcinosis, nephrolithiasis

Neurologic

- Encephalopathy
- Meningitis

Ocular

- Uveitis-pain and redness
- Lacrimal glands

Lymph, Liver, Spleen

- Lymphadenopathy
- Hepato-splenomegaly

Skin

- Erythema nodosum-painful nodules mostly on lower extremities
- Papular lesions on head and neck
- Plaque-like lesions on torso

Musculoskeletal

Polyarthritis/arthralgia

Cardiac Sarcoidosis

- 5% have cardiac involvement
- Often minimal extracardiac manifestations
 - 2/3 isolated cardiac involvement
 - 20% may have clinically silent cardiac involvement
- Highly suggestive manifestations include new / unexplained
 - AVB Mobitz II or 3rd degree AVB in patient <60 years
 - Sustained monomorphic VT
 - SVT less common
 - Syncope or sudden cardiac arrest
 - Cardiomyopathy / heart failure
 - Biopsy proven extracardiac sarcoidosis with symptoms/ECG/echo findings suggesting cardiac involvement
 - CMR/PET otherwise not necessary to screen
- DDx
 - Broad
 - Other myocarditis / inflammatory cardiomyopathy lymphocytic, giant cell, ARVC, genetic CMP

Diagnostic Approach

• ECG

- Nonspecific
- AVB
- Conduction disease
- Tachyarrhythmia

Echo

- Nonspecific findings
- Septal thinning (especially basal)
- LV or RV wall thickening possible (acute inflammation)
- RWMA non-coronary distribution, aneurysms
- PH assessment for pulmonary sarcoidosis

Biomarkers

- Nonspecific
- Serum ACE and lysozyme have limited utility
- Troponin and NTpro/BNP may be elevated especially if active disease or heart failure 13

Diagnostic Approach

• CMR

- LGE-multifocal, patchy, subepicardial, often basal septum and lateral walls
 - Other patterns possible
- Diagnostic

• FDG-PET

- Focal or diffuse cardiac uptake
- Marker of disease activity
- Suppression of physiologic FDG cardiac uptake
 - Pre-procedure fasting (≥12 hours), low-carb fat-rich meals day before
- Recommended if CMR negative or inconclusive with clinical findings suggestive, or to guide immunosuppression therapy
- Limited whole body images
 - Extracardiac Bx sites, LN

Role for Biopsy

- Lung / lymph node biopsy first if involvement seen by imaging \rightarrow high yield
- If extracardiac biopsy unavailable, cardiac biopsy may be necessary to confirm Dx
 - Risk of sampling error due, <u>low sensitivity</u> ≈ 20-30%
 - Guided by electro-anatomic mapping or CMR / PET

Diagnostic Criteria – Expert Consensus

- (1) Histological diagnosis from myocardial tissue
 - Presence of non-caseating granuloma on histological examination of myocardial tissue (no alternative cause)
- (2) **Clinical diagnosis** from non/invasive, CS is <u>probable</u> if:
 - (a) There is a histological diagnosis of extra-cardiac sarcoidosis, AND
 - (b) ≥1 of
 - Steroid/immunosuppressant responsive cardiomyopathy or heart block
 - Unexplained LVEF <40%
 - Unexplained sustained VT
 - Mobitz type II 2° HB or 3° HB
 - Patchy uptake on cardiac FDG-PET
 - Late gadolinium enhancement on CMR
 - Positive gallium uptake, AND
 - (c) Other causes excluded

Cardiomyopathy #2

Elizabeth Swiggum MD, FRCPC, FCCS Medical Director HFC Royal Jubilee Hospital, Victoria B.C. Clinical Associate Professor UBC Medical Chair Heart Failure and Chronic CVD Cardiac Services BC

MMP – you get what you get....

• 72 y.o female

Initially reviewed in 2018 for atypical chest pain at age 68 yr

- 5-6 yr occasional chest pain
- Dyslipidemia
- HTN
- ex-smoker
- Inactive
- Hearing aids bilateral
- Bilateral leg pain with walking
- Father died age 68 SCD

- Medications:
 - Telmisartan 80 mg daily
 - Other non-cardiac meds
- Physical Exam:
 - 139/71, HR 78 BPM
 - Normal Heart sounds
 - JVP 2 cm ASA
 - No edema, no rash
- Labs –eGFR 64, Urine protein +
- LDL 3.44 not on statin

ECG 2020- MMP

Testing was arranged...

Diagnositc testing – LV is a bit thick

- Echo March 2019 (2022 poor quality)
 - LVEF 60-65%
 - AV, MV sclerosis, no stenosis
 - LVIDd 4.3 cm, 13/13 mm thickness, LAVi 37.1 mL/m2

cMRI Sept 2019

- T1 mapping not performed
- LVEF 62%
- Anteroseptal thickness 15 mm
 - No obvious scar on delayed gadolinium enhancement

Audience Poll

Left Ventricular Hypertrophy should lead to:

- 1. Better BP control patient has hypertension
- 2. Medical Genetics referral to investigate cause such as hypertrophic cardiomyopathy
- 3. Endomyocardial biopsy
- 4. Repeat testing suveillance

Medical Genetics Referral to explore possible HCM

Family History

- 2 healthy adult children
- 1 sister (healthy) age 73
- 1 brother age 78 (heart rhythm problem)
- Father died age 68 cardiac arrest
 - Paternal grandfather died in 50's unknown cause
- Mother died at 92 stroke
- HCM and CMO panel done

Not expecting those results

- GLA gene mutation (c.775C>T, p.Pro259Ser)
- Glycosphingolipid level (LYSO-GB3)
 - 6.4 ng/mL (ref <1.8 ng/mL)
- Proteinuria mild
- Normal sweating
- No neuropathy

Fabry Disease

- X-linked autosomal recessive disease
 - pan ethnic, pathogenic variants in the GLA gene
 - Lysosomal enzyme depletion α-galactosidase A
 - Breaks down glycophospholipids
 - Leads to accumulation of lysosomal globotriaosylceramide (Gb3) and related globotriaosylsphingosine (lyso-Gb3)
 - Heart
 - Skin
 - Kidneys
 - Vasculature
 - Peripheral Nervous system

Extra-Cardiac Red Flags			Cardiac Red Flags			
Presenting Decades of Age	Any time	Family history of renal failure and/or stroke	Family history of LVH, particularly if no evidence of male-to-male transmission		His	
	1-2	Neuropathic pain				
	1-2	Gastrointestinal symptoms	Short PQ interval [†]	Ele		
	1-2	Angiokeratomas	Bradycardia	ctroca		
	1-2	Cornea verticillata*	Chronotropic incompetence			
	1-2	Hypohidrosis, heat/cold, and exercise intolerance	Atrioventricular blocks [†]		Diag	
	1-2	Albuminuria	LVH with normal systolic function		Inostic	
	3-4	Juvenile and/or cryptogenic TIA/stroke	Reduced global longitudinal strain	echoc	Tool	
	3-4	Hearing loss (either progressive or sudden)	Mild-to-moderate aortic root dilation			
	3-4	Dolichoectrasia of the basilar artery, chronic white matter hyperintensities at brain MRI	Mitral and aortic valve thickening with mild-to-moderate regurgitation			
	3-4	Proteinuria	Hypertrophy of papillary muscles	Card		
	3-4	Renal failure	Mid-layer posterolateral late gadolinium enhancement	ac Ma		
	3-4	Lymphedema	Low native T1	gnetic		

Pathophysiology of Fabry

Pieroni JACC 2021; 77:922 -36

Diagnosis and Staging

CENTRAL ILLUSTRATION: Proposed Evolution of Cardiac Involvement in Fabry Disease

Idiopathic LVH

Cardiomyopathy associated with Fabry Disease manifests mainly as LVH

Glycosphingolipid accumulation and inflammation / immune activation

Cardiac MRI is essential for diagnosis and staging

Early treatment can improve clinical outcomes

Francois Tournoux MD PhD

Director, AmyloCHUM program, Centre Hospitalier de l'Université de Montréal Associate Professor, University of Montreal President, Quebec Heart Failure Society Researcher at Fonds de Recherche du Québec - Santé

Courtesy of T Damy

HEART FAILURE UPDATE 2022

Physiopathology

Cardiac manifestations

Question:

What will determine a patient's phenotype at diagnosis?

- 1) The form of amyloidosis: ATTR vs AL vs AA...
- 2) The gene mutation, in hereditary forms
- 3) The time when the patient is assessed
- 4) All of the above

Time (Years)

Rapezzi C. Arbustini E. Caforio A.L.P. and al. Eur Heart J 2013 May;34(19):1448-58 Sperry, B.W., Reyes B.A., Ikram A. and al. JACC 2018;72(17):2040-50

When to suspect the diagnosis?

ECG: low QRS voltage / pseudo q waves

≤50% of cases with ATTR-CM

LABS:

Troponin – NTproBNP

ECHOCARDIOGRAPHY

M-mode and Two-dimensional Echocardiographic Features in Cardiac Amyloidosis

Aristarco G. Siqueira-Filho, M.D., Claudio L. P. Cunha, M.D., Abdul J. Tajik, M.D., James B. Seward, M.D., Thomas T. Schattenberg, M.D., and Emilio R. Giuliani, M.D.

Biventricular hypertrophy

Apical sparing

Circulation 63, No. 1, 1981

Phelan D. Heart 2012

Diastolic dysfunction

Quarta CC et Coll. Circulation. 2014 Ternacle J et Coll. JACC 2019

Valvular disease

Pericardial effusion

CARDIAC MRI

Recommendations	Class"	Level	Ref. ^c	
It is recommended that CMR studies be performed and interpreted by teams experience in cardiac imaging and in the evaluation of heart muscle disea	ed I se.	c	148,149	
In the absence of contraindication CMR with LGE is recommended in patients with suspected HCM who have inadequate echocardiographic windows, in order to confirm the diagnosis.	ons, d I	в	126,127	
In the absence of contraindication CMR with LGE should be considered in patients fulfilling diagnostic criteria for HCM, to assess cardiac anatomy, ventricus function, and the presence and extent of myocardial fibrosis.	ons, Ila	в	124,126,127,130 136,138–143	
CMR with LGE imaging should I considered in patients with suspected apical hypertrophy of an <u>eurysm</u> .	r IIa	c	127.129	
CMR with LGE imaging should I considered in patients with suspected cardiac amyloidosis.	lla	с	22,147	
CMR with LGE may be consider before septal alcohol ablation or myectomy, to assess the extent and distribution of hypertrophy and myocardial fibrosis.	ed IIb	c	150,151	

Music S and Coll. Canadian Journal of Cardiology 38 (2022) 384e388

How to confirm the diagnosis?

ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging

Grade 0	No myocardial uptake and normal bone uptake	
Grade 1	Myocardial uptake less than rib uptake	
Grade 2	de 2 Myocardial uptake equal to rib uptake	
Grade 3	Myocardial uptake greater than rib uptake with mild/absent rib uptake	

Grade 2 or 3 positive = **specificity and PPV >98%**

How to confirm the diagnosis?

CCS guidelines 2020 Fine N.M., Davis M.K., Anderson K. and al. CJC 2020 March;36(3):322-34

CONCLUSION

- The first step is to look for the red flags: physical exam, ECG, biomarkers...
- For echocardiographers:
 - Ask the patient for her/his medical history
 - Have a look at the ECG
 - Do not spend all your energy on the strain!
- To confirm the diagnosis: ask for the right exam at the right time for the right patient

Questions and Discussion