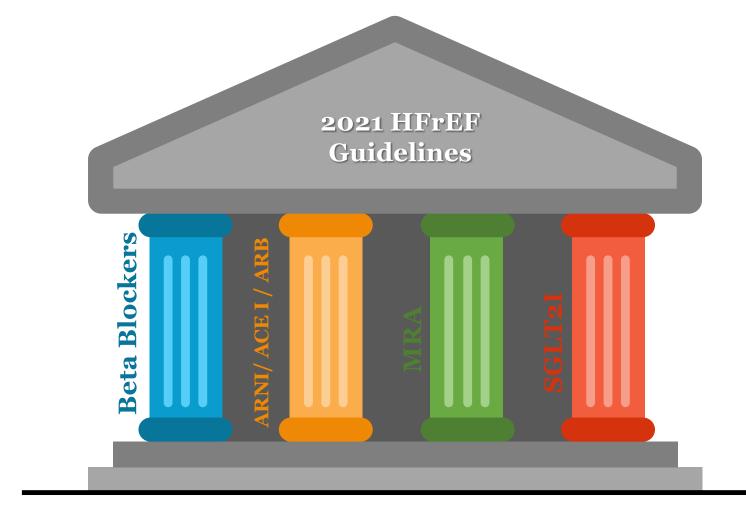


What to do When the Big 4 Are Not Enough


Lisa M Mielniczuk MD, FRCPC

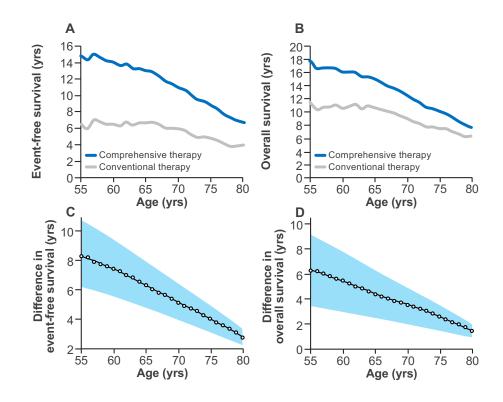
Professor of Medicine, University of Ottawa Heart Institute Director, Advanced Heart Disease Program Vice Chair, Patient Quality and Clinical Care, Department of Medicine, University of Ottawa

Conflict of Interest Disclosures

- Grants/research support: Astra Zeneca, BI, Bayer
- Consulting fees/ Speaker fees: Astra Zeneca, Bayer, Janssen, Novartis, Servier, Bl

The 4 Foundational Therapies in HFrEF Management

Cumulative impact of evidence-based HFrEF medical therapies on all-cause mortality

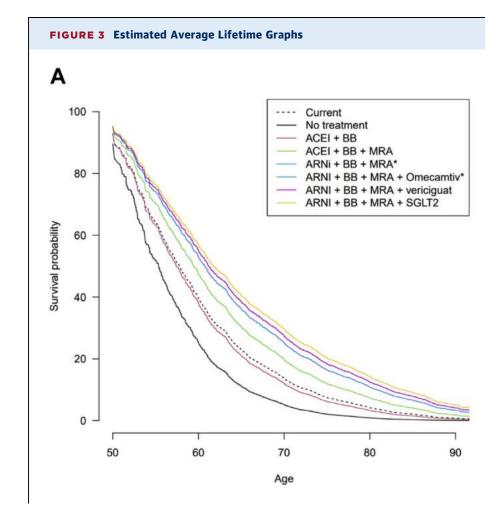

	Relative Risk	Two-year Mortality
None		35.0%
ARNI (vs. imputed placebo)	↓ 28%	25.2%
BB	↓ 35%	16.4%
MRA	↓ 30%	11.5%
SGLT2i	↓ 17%	9.5%

Cumulative risk reduction in mortality if all evidence-based medical therapies are used: RRR 72.9%, ARR: 25.5%, NNT=3.9

ARNI, angiotensin-receptor-neprilysin inhibitor; ARR, absolute risk reduction, BB, beta-blocker; EF, ejection fraction; MRA, mineralocorticoid receptor antagonist; NNT, number needed to be treated to prevent prespecified outcomes within 1 year; RRR, relative risk reduction; SGLT2i, sodium-glucose cotransporter 2 inhibitor Updated from Fonarow GC et al. Am Heart J 2011;161(6):1024-1030 and Fonarow GC et al. Lancet 2008;372(9645):1195-1196.

COMPREHENSIVE THERAPY WITH NEWER AGENTS IMPROVES SURVIVAL AND EVENT-FREE SURVIVAL IN HFrEF

- In HFrEF, treatment effects of comprehensive therapy (ARNI, beta- blocker, MRA, SGLT2i) was compared to conventional therapy (ACEI/ARB, beta-blocker) in cross trial analyses
- This showed significant improvement with comprehensive therapy in both overall survival and event-free survival across all age groups
- In 55-year-old men, comprehensive therapy improved event-free survival by 8.3 years and overall survival by 6.3 years



ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin-receptor-neprilysin inhibitor; HFrEF, heart failure with reduced ejection fraction; MRA, mineralocorticoid receptor antagonist; SGLT2i, sodium-glucose cotransporter 2 inhibitor Vaduganathan M et al. Lancet 2020;S0140-6736(20)30748-0.

Impact of Goal Directed Medical Therapy for Heart Failure

CENTRAL ILLUSTRATION Relative Risk Reduction of Different Pharmacological Treatment Combinations for Heart Failure

Treatment		All-Cause Mortality	HR (95% CI)
ARNI + BB + MRA + SGLT2		-	0.39 (0.31-0.49)
ARNI + BB + MRA + Vericiguat	_		0.41 (0.32-0.53)
ARNI + BB + MRA + Omecamtiv			0.44 (0.36-0.55)
ACEI + BB + Dig + H-ISDN			0.46 (0.35-0.61)
ACEI + BB + MRA + IVA			0.48 (0.39-0.58)
ACEI + BB + MRA + Vericiguat			0.49 (0.39-0.62)
ACEI + BB + MRA + Omecamtiv			0.52 (0.43-0.63)
ARNI + ARB + BB + Dig			0.65 (0.55-0.76)
ARNI + BB + MRA			0.44 (0.37-0.54)
ACEI + BB + MRA			0.52 (0.44-0.61)
ACEI + MRA + Dig			0.66 (0.56-0.78)
ACEI + BB + Dig			0.68 (0.59-0.78)
ARB + BB + Dig			0.73 (0.64-0.83)
ACEI + ARB + Dig			0.83 (0.72-0.96)
Dig + H–ISDN			0.67 (0.53-0.86)
ARNI + BB			0.58 (0.50-0.68)
ACEI + BB			0.69 (0.61-0.77)
ARB + BB			0.74 (0.66-0.82)
ACEI + Dig			0.87 (0.78-0.98)
ARB + Dig			0.94 (0.84-1.05)
BB		-	0.78 (0.72-0.84)
ACEI			0.89 (0.82-0.96)
ARB			0.95 (0.88-1.02)
Dig			0.99 (0.91-1.07)
PLBO			1.00
	0.25	0.5 1	2

THERAPEUTIC INERTIA: MISSED OPPORTUNITY TO INITIATE AND OPTIMIZE MEDICAL THERAPY

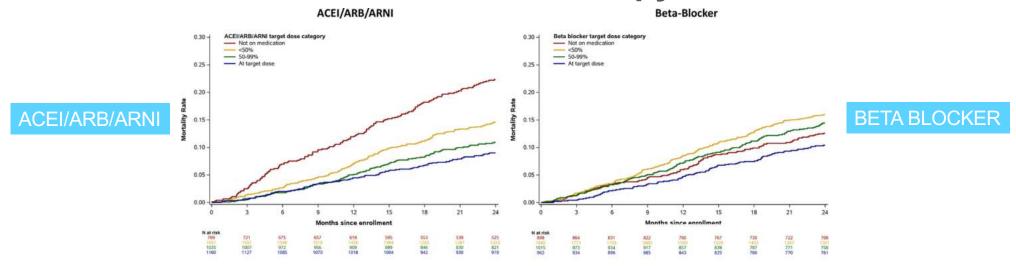
CHAMP-HF Registry of 3518 HFrEF patients in 150 US primary care and cardiology practices

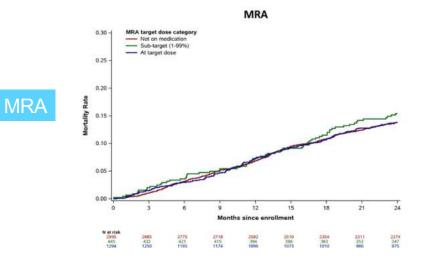
	Patients <u>Without</u> Contraindications but <u>Not</u> Treated	Patients Treated at <100% of Target Dose
ACEI/ARB	39.1%	82.5%
ARNI	86.1%	86.0%
ACEI/ARB/ARNI	26.2%	83.2%
Beta-blocker	32.9%	72.5%
MRA	65.9%	23.4%

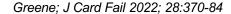
<1% of patients eligible for all medications were simultaneously receiving target doses of ACEI/ARB/ARNI, beta-blocker and MRA

ARB, angiotensin-receptor blocker Greene SJ et al. J Am Coll Cardiol 2018;72(4):351-366.

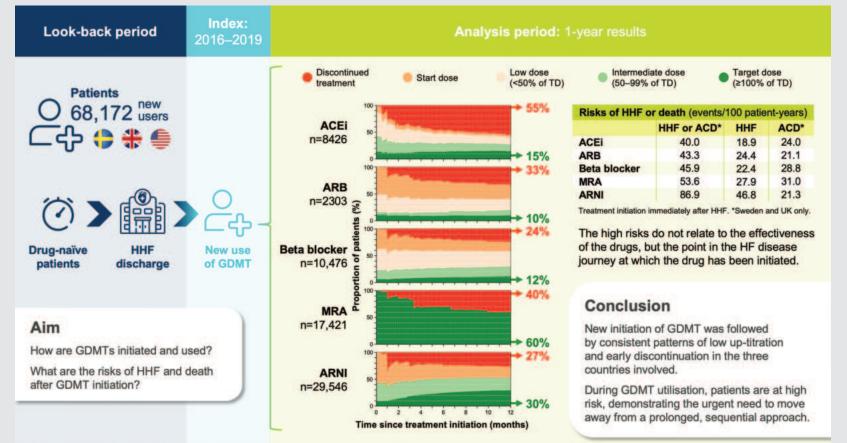
JAMA Cardiology | Original Investigation

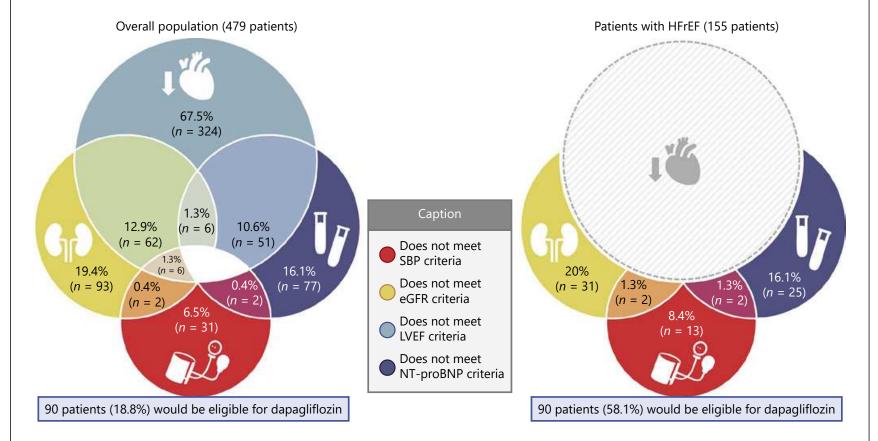

Assessment of Limitations to Optimization of Guideline-Directed Medical Therapy in Heart Failure From the GUIDE-IT Trial A Secondary Analysis of a Randomized Clinical Trial


Mona Fiuzat, PharmD; Justin Ezekowitz, MB BCh, MSc; Wendimagegn Alemayehu, PhD; Cynthia M. Westerhout, PhD; Marco Sbolli, MD; Dario Cani, MD; David J. Whellan, MD, MHS; Tariq Ahmad, MD; Kirkwood Adams, MD; Ileana L. Piña, MD; Chetan B. Patel, MD; Kevin J. Anstrom, PhD; Lawton S. Cooper, MD, MPH; Daniel Mark, MD, MPH; Eric S. Leifer, PhD; G. Michael Felker, MD, MHS; James L. Januzzi, MD; Christopher M. O'Connor, MD


Figure 2. Reasons for Not Titrating Medications by Treatment Arm

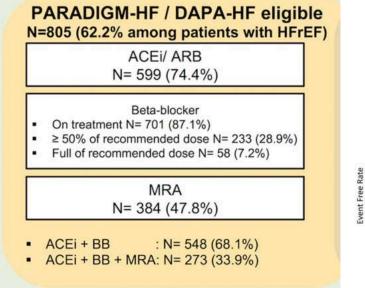
Use of Goal Directed Medical Therapy: Dose Matters

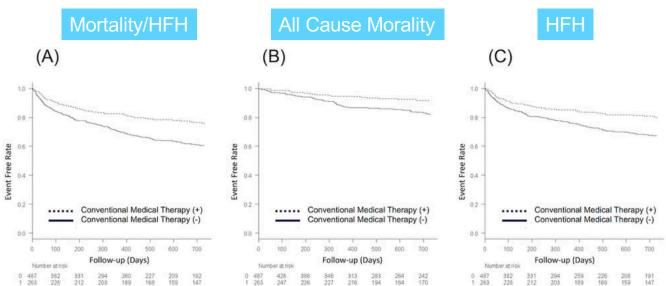


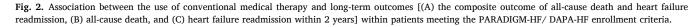

11

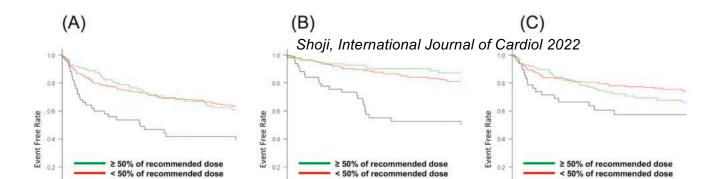
Use of Goal Directed Medical Therapy in Clinical Practice

ACD, all-cause death; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor neprilysin inhibitor; GDMT, guideline-directed medical therapy; HF, heart failure; HHF, hospitalisation for heart failure; MRA, mineralocorticoid receptor antagonist; TD, target dose. Savarese; Eur J Heart Fail 2021; 23: 1499


Goal Directed Medical Therapy: Real World Eligibility

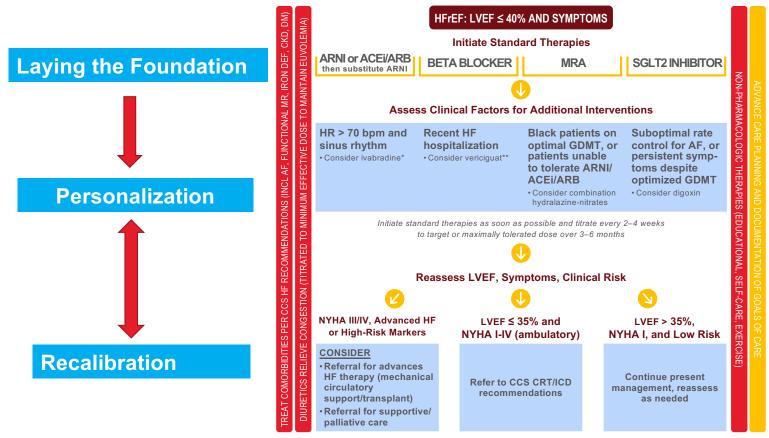



Maltes; Cardiology 2021: 146:201

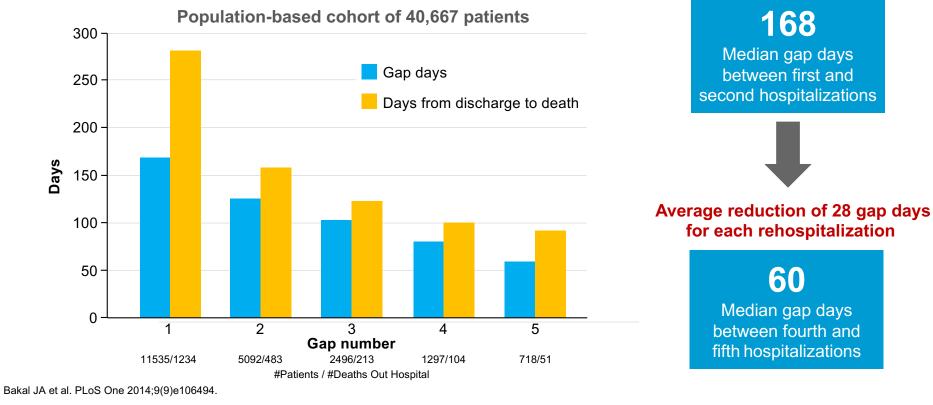

Foundational Therapy: Real World Eligibility

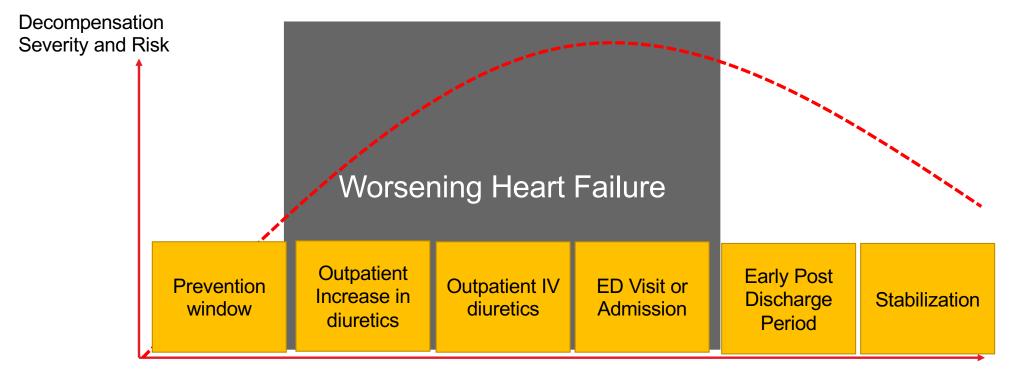
HFrEF (N= 1295)



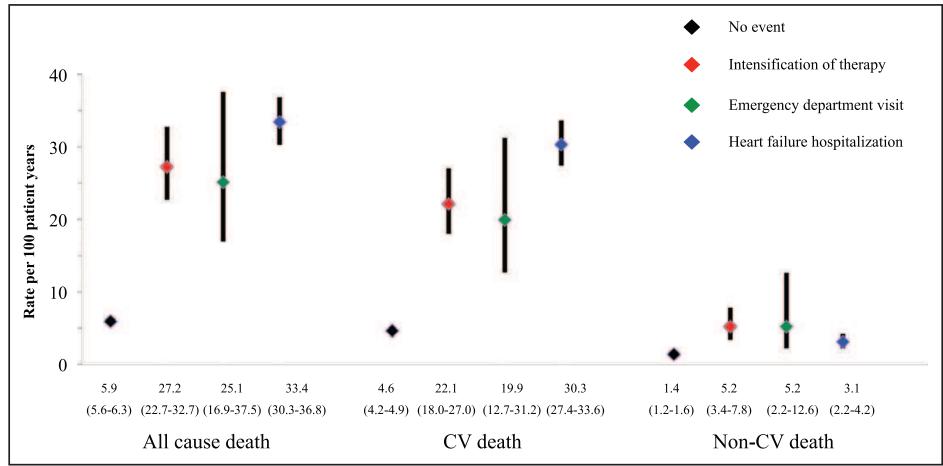


Residual Risk Despite Optimized Goal Directed Medical Therapy First Occurrence of Elther CV death or Heart Fallure Hospitalization at 12


2021 CCS/CHFS Heart Failure Guidelines Update


ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor-neprilysin inhibitor; CCS, Canadian Cardiovascular Society; CKD, chronic kidney disease; CRT, cardiac resynchronization therapy; DM, diabetes mellitus; GDMT, guideline-directed medical therapy; ICD, implantable cardioverter defibrillator; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; NYHA, New York Heart Association; SGLT, sodium glucose transport. * Health Canada has approved ivabradine for patients with HFrEF and heart rate (HR) 77 bpm in sinus rhythm. ** Vericiguat is not yet approved for use in Canada. *Canadian Journal of Cardiology* 2021 37531-546DOL: (10.1016/j.cjca.2021.01.017)

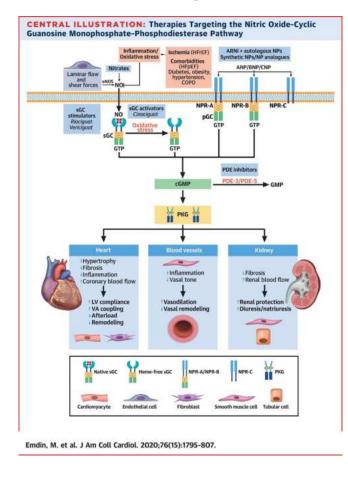
EACH TIME PATIENTS ARE HOSPITALIZED FOR HF, THEY ARE BACK IN HOSPITAL 28 DAYS FASTER THAN THE LAST TIME

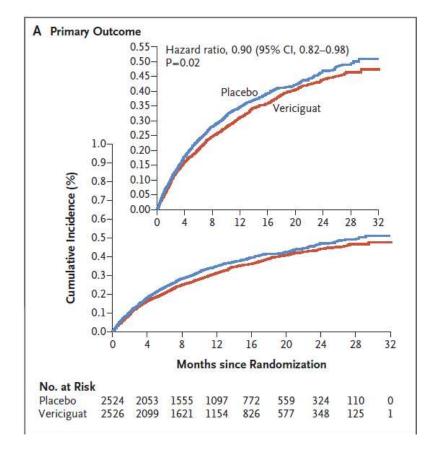

Alberta Health

What is Worsening Heart Failure?

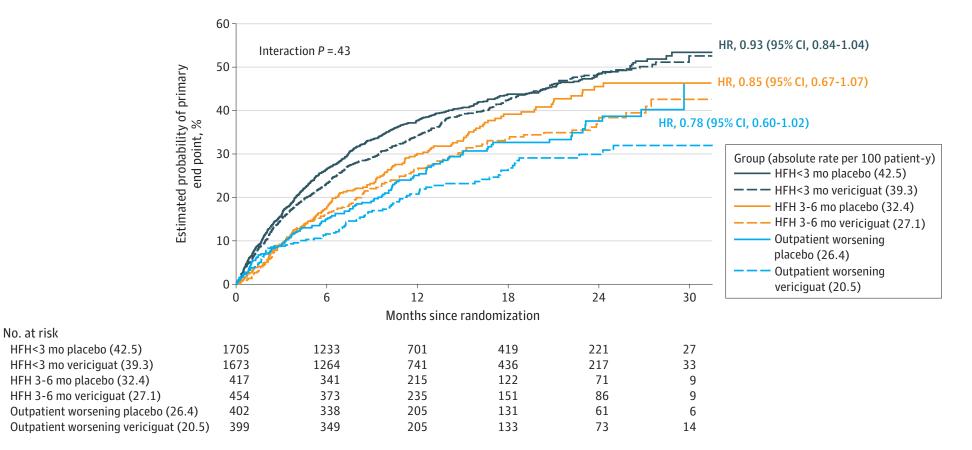
Worsening HF in PARADIGM-HF

Okumura N, Circulation 2016;133:2254

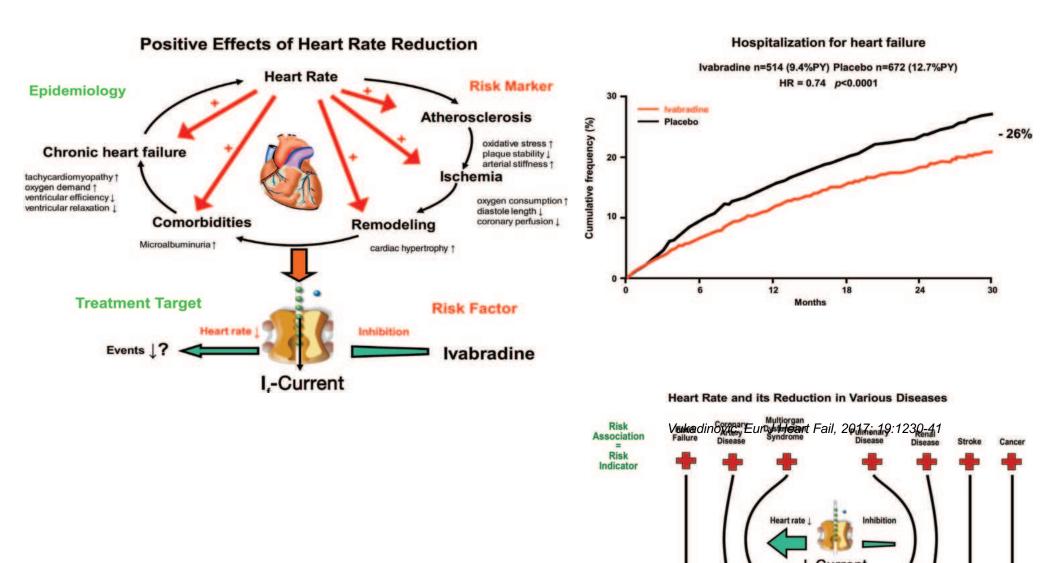

Victoria Trial Patient Population

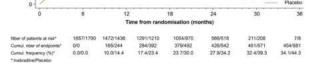


Patients may have been <u>randomized as an inpatient or outpatient</u> but must have met criteria for clinical stability (e.g., $SBP \ge 100 \text{ mmHg}$, off IV treatments $\ge 24 \text{ hours}$)


Armstrong et al. JACC Heart Fail. 2018 Feb;6(2):96-104. doi: 10.1016/j.jchf.2017.08.013.

Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction


Worsening HF Events in VICTORIA



Lam C, JAMA Cardiol 2021;6:706

22

Heart Rate and its Reduction in Chronic Heart Failure

Effects of Ivabradine in Patients with HR>77 bpm tients with a heart rate \geq 77 b.p.m. at rest.

Quality of Life and Patient Reported Outcomes

Table 2 Change between baseline and last visit for New York Heart Association class and global assessment in patients with a heart rate \geq 77 b.p.m. at rest

	Ivabradine group ($N = 1657$)	Placebo group ($N = 1700$)	Р
NYHA functional class, % (n)	Nobs = 1643	Nobs = 1680	0.0003
Improved	28.0% (<i>n</i> = 460)	22.7% (<i>n</i> = 382)	
Stable or worsening	72.0% (<i>n</i> = 1183)	77.0% (<i>n</i> = 1298)	
Change in global self-assessment, % (n)	Nobs = 1497	Nobs = 1515	0.0006
Improved	72.3% (<i>n</i> = 1082)	66.6% (<i>n</i> = 1009)	
Stable or worsening	27.7% (<i>n</i> = 415)	33.4% (<i>n</i> = 506)	
Change in global assessment, physician perspective, % (n)	Nobs = 1573	Nobs = 1596	< 0.0001
Improved	61.0% (<i>n</i> = 960)	54. 5% (<i>n</i> = 869)	
Stable or worsening	39.0% (<i>n</i> = 613)	45.5% (<i>n</i> = 727)	

Nobs, number of observations; NYHA, New York Heart Association.

Table 3 Quality of life, subgroup of patients with a heart rate \geq 77 b.p.m. at rest

	Ivabradine		Treatment effect (change	in QoL at 1 year)
KCCQ scores	group $(N = 510)$	Placebo group $(N = 512)$	Estimate (95% CI)	Р
CSS, at baseline mean (\pm SD) CSS, changes at last post-baseline value mean (\pm SD) OSS, at baseline mean (\pm SD) OSS, changes at last post-baseline value mean (\pm SD)	66.58 (±20.74) 3.66 (±18.51) 63.27 (±20.67) 5.30 (±18.54)	66.38 (±20.04) 1.24 (±18.67) 63.13 (±19.31) 2.19 (±18.86)	2.37 (0.25–4.48) 	0.028 0.005

CSS, clinical summary score; KCCQ, Kansas City Cardiomyopathy Questionnaire; OSS, overall summary score; QoL, quality of life.

Bouabdallaoui, ESC Heart Fail 2019; 6:1199

Figure 2 Kaplan-Meier curves for cardiovascular mortality alone in pa-

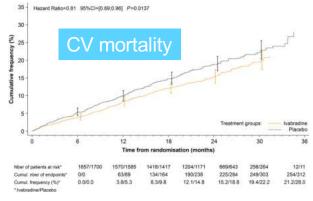
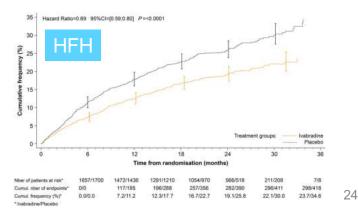



Figure 3 Kaplan-Meier curves for hospitalization for worsening heart failure alone in patients with a heart rate \geq 77 b.p.m. at rest.

Ivabradine: Pooled Outcome Estimates

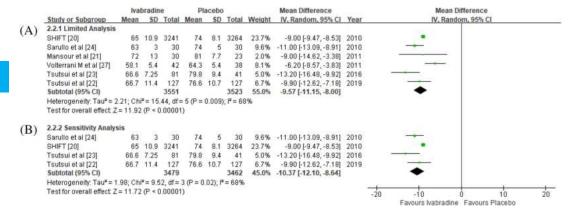
Patient or population: patients with heart failure Setting: any setting

Intervention: Ivabradine

Comparison: placebo/no intervention/usual care

	-			Anticipated abs	olute effects
Outcomes	№ of participants (studies) Follow-up	Certainty of the evidence (GRADE)	Relative effect (95%CI)	Risk with placebo <i>f</i> no intervention <i>f</i> usual care	Risk difference with Ivabradine
All-cause mortality	19257 (22 RCTs)	⊕⊕⊕⊕ High ^{a,b,c}	RR 0.94 (0.88 to 1.01)	134 per 1.000	8 fewer per 1.000 (16 fewer to 1 more)
Serious adverse events	20144 (31 RCTs)	⊕⊕⊖⊖ Low ^{b,c,d}	RR 0.90 (0.87 to 0.94)	374 per 1.000	37 fewer per 1.000 (49 fewer to 22 fewer)
Quality of life (KCCQ)	1781 (2 RCTs)	⊕⊕⊖⊖ Low ^{b,e,f}			MD 2.92 higher (1.34 higher to 4.5 higher)
Quality of life (MLWHFQ)	221 (4 RCTs)	⊕⊖⊖⊖ Very low ^{b,g,h}	•		MD 5.28 lower (6.6 lower to 3.96 lower)
Cardiovascular mortality	18738 (15 RCTs)	⊕⊕⊕⊕ High ^{a,b,c}	RR 0.98 (0.90 to 1.06)	103 per 1.000	2 fewer per 1.000 (10 fewer to 6 more)
Myocardial infarction	18190 (9 RCTs)	⊕⊕⊖⊖ Low ^{a,c,i}	RR 1.00 (0.80 to 1.24)	17 per 1.000	0 fewer per 1.000 (3 fewer to 4 more)
Non-serious adverse events	21598 (49 RCTs)	$\oplus \oplus \oplus \oplus \oplus$ High ^{a,b,c}	RR 1.10 (1.07 to 1.12)	471 per 1.000	47 more per 1.000 (33 more to 57 more)

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

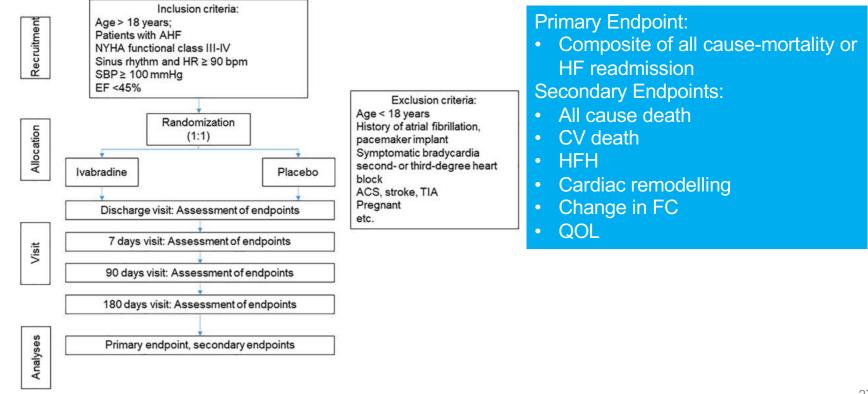

CI: confidence interval; MD: mean difference; RR: risk ratio

Maagaard; BMJ Evidence Based Med 2021

CDADE Working Crown grades of avidance

Ivabradine: Pooled Outcome Estimates

HOOT	Pate	POO	luction
	Nale	INCU	luction


26

	Chudu or Subgroup	Ivabra		Place		Weight	Risk Ratio	Veer	Risk Ratio M-H, Fixed, 95% Cl	Placebo Mean Difference an SD Total Weight IV, Fixed, 95% CI Year	Mean Difference IV. Fixed, 95% Cl
	Study or Subgroup	Events	Total	Events	Total	weight	M-H, Fixed, 95% CI	real	MI-H, FIXEU, 95% CI	And we are the second second	
	5.2.1 Cardiovascular									0.1 7 30 9.1% 5.30 [2.22, 8.38] 2010	
(SHIFT [20]	449	3241	491	3264	38.1%	0.92 [0.82, 1.04]	2010		4.1 6.7 23 5.3% 2.30 [-1.74, 6.34] 2011	
(A)	Mansour et al [21]	3	30	3	23	0.3%	0.77 [0.17, 3.45]	2011		1.5 <u>10 199 22.2% 3.20[1.23.5.17]</u> 2011	
	Tsutsui et al [22]	7	127	8	127	0.6%	0.88 [0.33, 2.34]	2019		31 C) (Montolity (12016	
	Subtotal (95% CI)		3398		3414	39.0%	0.92 [0.82, 1.03]		•	33 CV Mortality 2019	
	Total events	459		502						0%	
	Heterogeneity: Chi ² =	0.07. df=	2(P = 0)	97); F= (0%					0%	
	Test for overall effect.										
	5.2.2 Worsening HF F	Readmiss	ion							0.1 7 30 9.1% 5.30 [2.22, 8.38] 2010	
	SHIFT [20]	514	3241	672	3264	52.2%	0.77 [0.69, 0.85]	2010		1.5 10 199 22.2% 3.20 [1.23, 5.17] 2011	
(B)	Mansour et al [21]	2	30	3	23	0.3%	0.51 [0.09, 2.81]	2011		and the second	
(D)	Tsutsui et al [23]	2	84	1	41	0.1%	0.98 [0.09, 10.46]	2016		HF Hospitalization	•
	Tsutsui et al [22]	20	127	36	127	2.8%	0.56 [0.34, 0.91]				
	Subtotal (95% CI)		3482		3455		0.76 [0.69, 0.84]	1000	•		
	Total events	538		712						-20 -10	0 10 20 vabradine Lower EF in Placebo
	Heterogeneity: Chi ² =	1.90, df=	3 (P = 0	59); I [#] = (3%						
	Test for overall effect	Z=5.34 (P < 0.00	001)						Richard, C	Clini Cardiol: 2021: 44:463

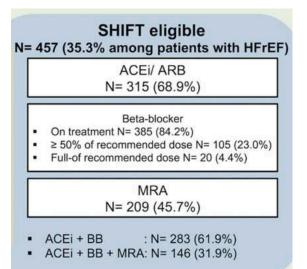
Use of Ivabradine in Acute Heart Failure

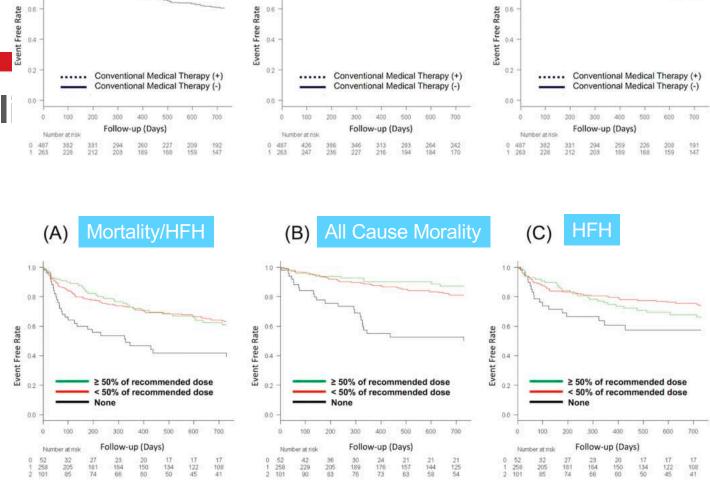
FIGURE 1 Flow chart of SHIFT-AHF trial. ACS, acute coronary syndrome; TIA, transient ischaemic attack.

Real World Eligibility of Ivabradine

Table 2SHIFT	study-like	characteristics	potential	Ivab-
radine patients				

Characteristic, n (%)	$\begin{array}{l} \text{AI} \\ n = 491 \end{array}$	CH <i>n</i> = 605	p value AH/ CH
$LVEF \le 35\%$	172/491 (35.0)	184/605 (30.4)	0.1045
Sinus rhythm	279/491 (56.8)	366/605 (60.5)	0.2191
$HR \ge 70 \text{ bpm}$	205/491 (41.8)	317/605 (52.4)	0.0004*
"SHIFT study-like" characteristics	41 (8.4)	71 (11.7)	0.0658


AH Academic hospital, CH community hospital, HR heart rate, LVEF left ventricular ejection fraction, % percentage * Significant p value



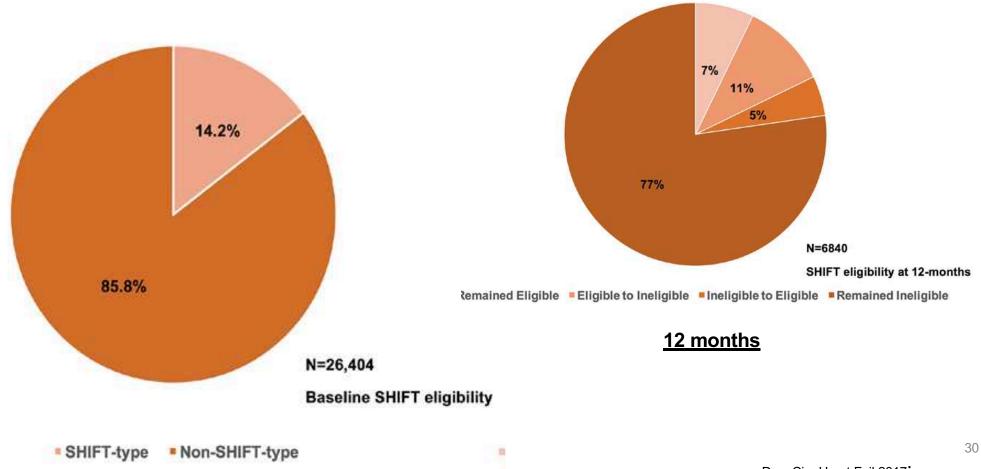
1.0

0.8

HFrEF (N= 1295)

0.8

Fig. 3. Association between the dose of beta-blockers and long-term outcomes [(A) the composite outcome of all-cause death and heart failure readmission, (B) allcause death, and (C) heart failure readmission within 2 years] within patients meeting the SHIFT enrollment criteria.

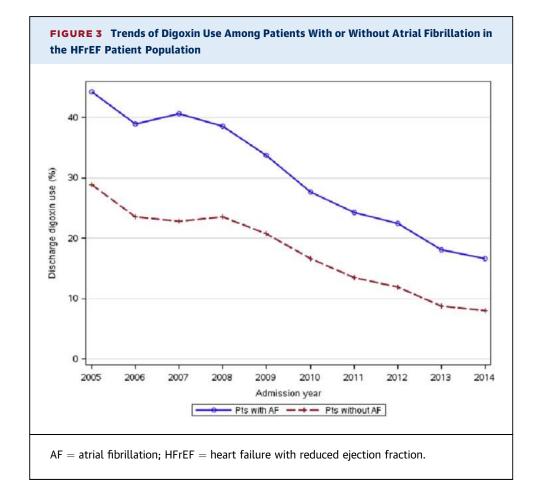

Shoji, International Journal of Cardiol 2022

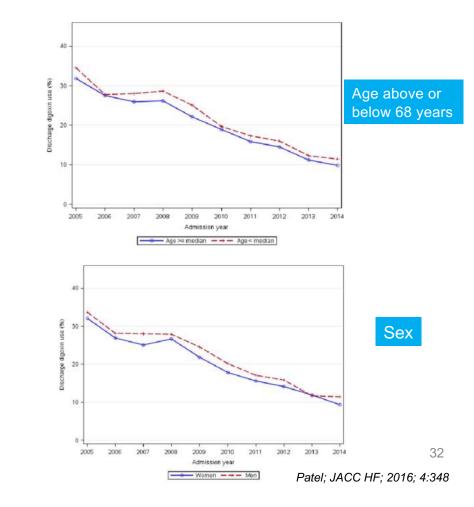
1.0

0.8

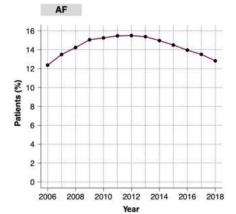
29

Real World Eligibility of Ivabradine

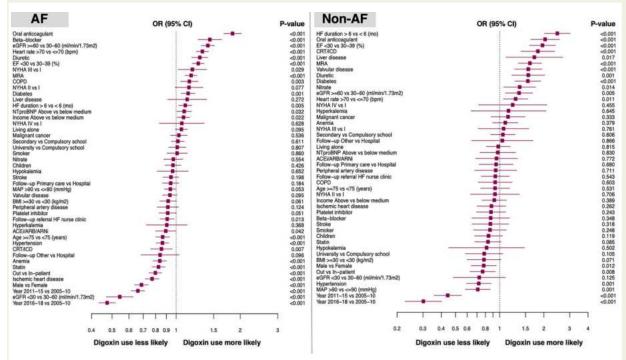

Das; Circ Heart Fail 2017;


Digoxin: The Great Divide

	Study Desig			
Meta-analyses and other study designs	Meta-analyses of RCTs	RCTs		
		DIG [6] *Ahmed et al. [7, 8] *Gheorghiade et al. [10] RADIANCE [11] PROVED [12] RATE-AF [24]	Positive	Outcomes
Lopes et al. [17] Allen et al. [18] Gheorghiade et al. [19]	Ziff et al. [20]		Neutral	
Mate at el. [13, 16] Wang et al. [14] Ouyang et al. [15]			Negative	


Triska; Card Drugs Ther 2021

Temporal Trends in Digoxin Use Over Time



Digoxin Use in HFrEF: Swedish Heart Failure Registry

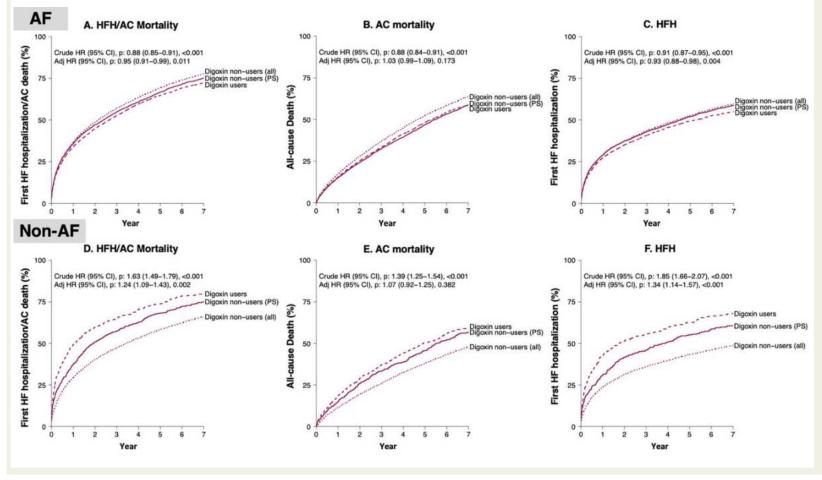
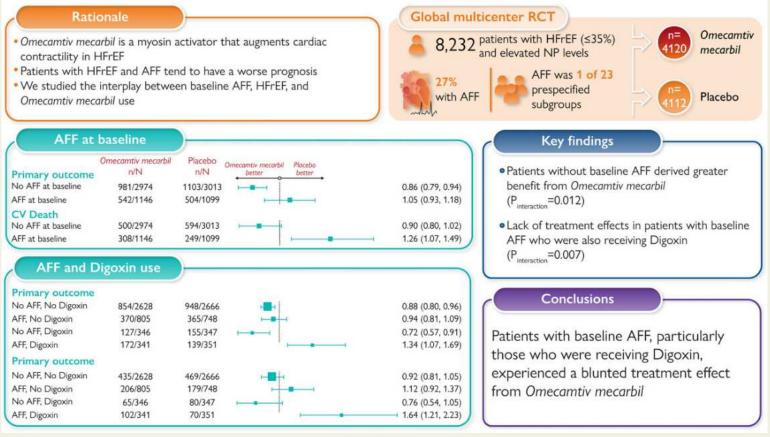


Figure 3 Independent predictors of digoxin use in patients with (left panel) and without atrial fibrillation (right panel). The forest plots report the odds ratios and 95% confidence intervals derived from multivariable logistic regression analyses using digoxin use as the dependent variable. Abbreviations as in *Table 1*.

Kapelios; Eur Heart J 2021


Outcomes Based on Digoxin Use

Kapelios; Eur Heart J 2021

Caution: Potential Risks of Combination Therapy

Influence of atrial fibrillation on efficacy and safety of Omecamtiv Mecarbil in heart failure: The GALACTIC-HF trial

Solomon SD; Eur Heart J 2022

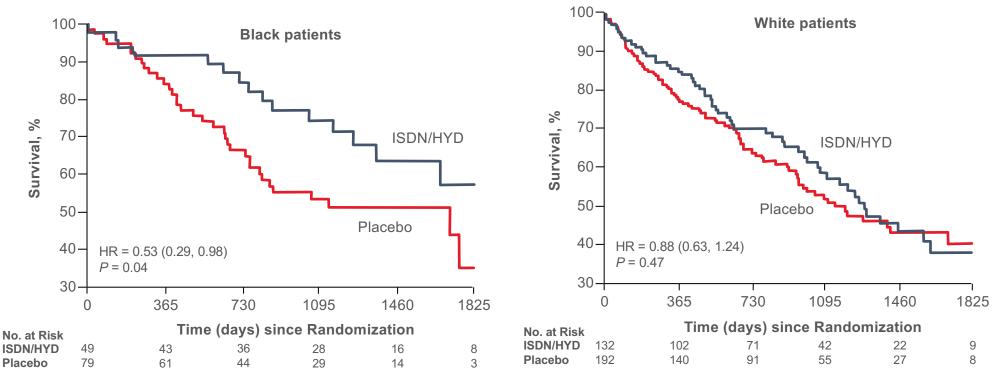
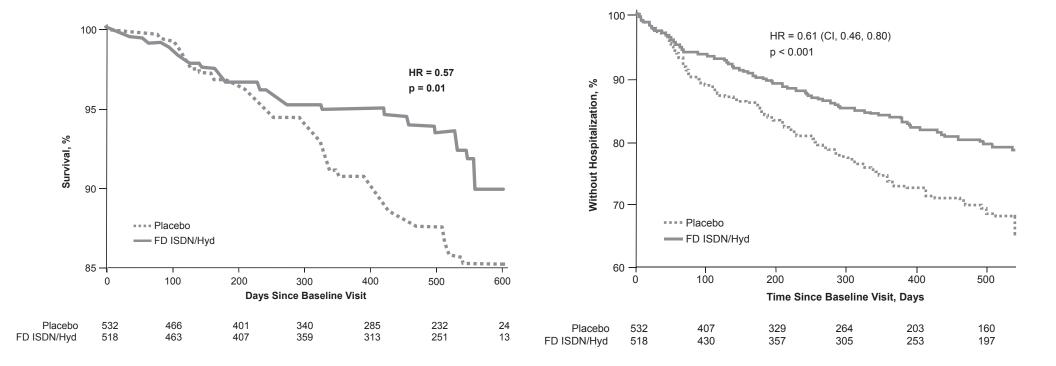

Digoxin and SGLT2 Inhibitors Compared..

Table 1. Outcomes in Large-Scale Trials of SGLT2 Inhibitors and Digoxin in Patients With Heart Failure and a ReducedEjection Fraction

	DIG	DAPA-HF	EMPEROR-Reduced
No. of randomized patients	7372	4744	3730
Median duration of double-blind therapy	37 months	18 months	16 months
Effect on all-cause mortality	0.99 (0.91–1.07)	0.83 (0.71–0.97)	0.92 (0.77-1.10)
Effect on cardiovascular deaths	1.01 (0.93-1.10)	0.82 (0.69-0.98)	0.92 (0.72–1.12)
Effect on heart failure deaths	0.88 (0.77-1.01)	Not reported	Not reported
Effect on all-cause hospitalizations	0.92 (0.87–0.98)	Not reported	0.82 (0.74–0.90)
Effect on cardiovascular hospitalizations	0.87 (0.81–0.93)	Not reported	0.75 (0.67–0.85)
Effect on heart failure hospitalizations	0.72 (0.66-0.79)	0.70 (0.59-0.83)	0.69 (0.59–0.81)

Considering Hydralazine-Nitrates Combinations


Survival in Black patients and White patients in the V-HeFT 1 trial (from Cohn et al.⁷)

HR, hazard ratio; ISDN/HYD, isosorbide dinitrate/hydralazine

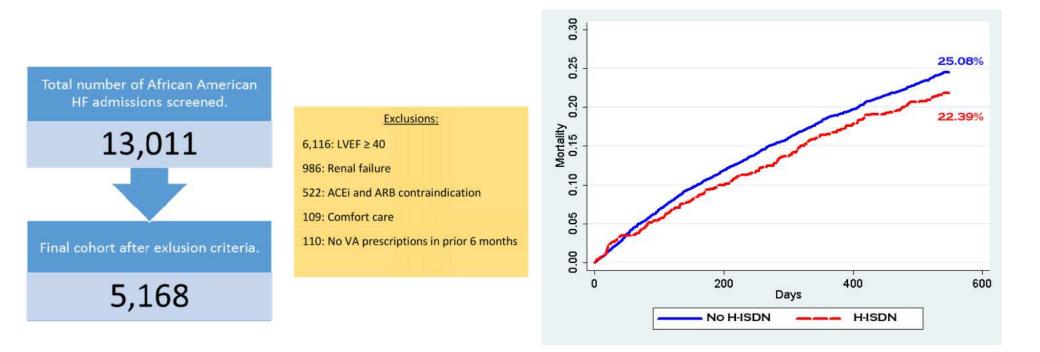
Al-Mohammad A. Hydralazine and nitrates in the treatment of heart failure with reduced ejection fraction. ESC Heart Fail. 2019;6(4):878-883. doi:10.1002/ehf2.12459

Considering Hydralazine-Nitrates Combinations

Taylor Al; New Engl J Med 2004; 351:2049

38

Use of Hydralazine-Nitrates in Contemporary Heart Failure Management

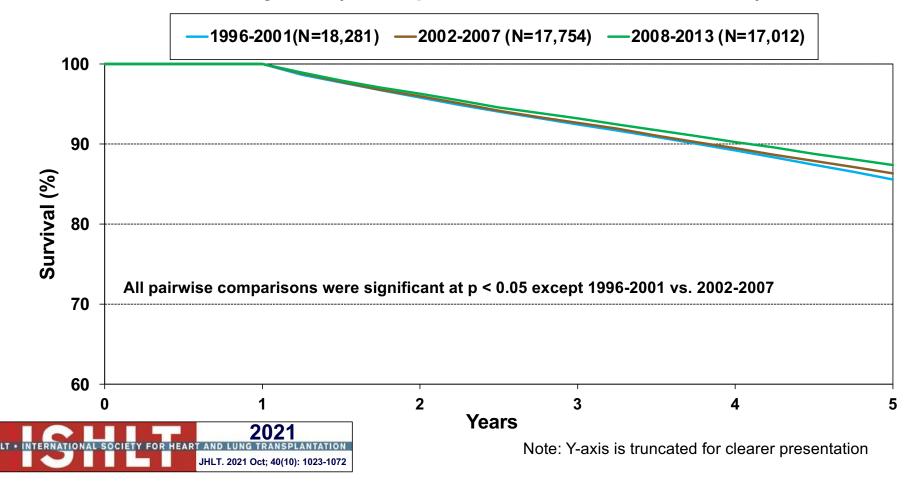

Table 4

Percent of participants reaching target dose of hydralazine/nitrate and sacubitril/valsartan by race

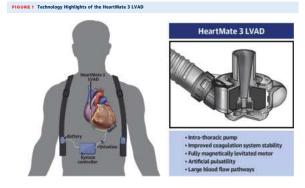
	Black				Nonblack			
	Target dose* achieved (patients on therapy)			Eligible patients on target dose	Target dose* achieved (patients on therapy)			Eligible patients on target dose
	Less than 50%	50% to <100%	100% or more	100% or More	Less than 50%	50% to <100%	100% or more	100% or More
Hydralazine/ Nitrate	56%	33%	10%	2%	65%	28%	7%	0.1%
Sacubitril/ Valsartan	33%	36%	29%	8%	49%	29%	19%	4%

* Target total daily doses were as follows: hydralazine 300 mg, nitrate (isosorbide dinitrate) 120 mg, and sacubitril/valsartan 400 mg.

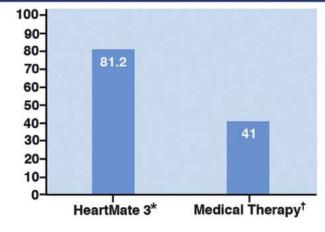
Use of Hydralazine-Nitrates in Contemporary Heart Failure Management


Ziaeian B. JACC Heart Fail 2017; 5:632

When to Recognize Transition to Advanced Heart Failure "I NEED HELP"


	Factor	Description
I	Inotropes	Previous or ongoing requirement for inotropes
Ν	NYHA FC OR Natriuretic peptides	Persistently > 3 Persistently elevated>1000
E	End organ dysfunction	Worsening renal or liver dysfunction
E	Ejection fraction	<20%
D	ICD shocks	Recurrent shocks
Н	hospitalization	>1 in one year
E	Escalating diuretics	
L	Low BP	Consistently<90 mmHg
Р	Prognostic meds	Inability to titrate or initiate

Adult Heart Transplants


Kaplan-Meier Survival within 5 Years Conditional on Survival to 1 Year By Era (Transplants: Jan 1996 - Jun 2013)

Tends in LVAD Outcomes

2-Year Survival Rate of Advanced HF Patients Stratified by Treatment

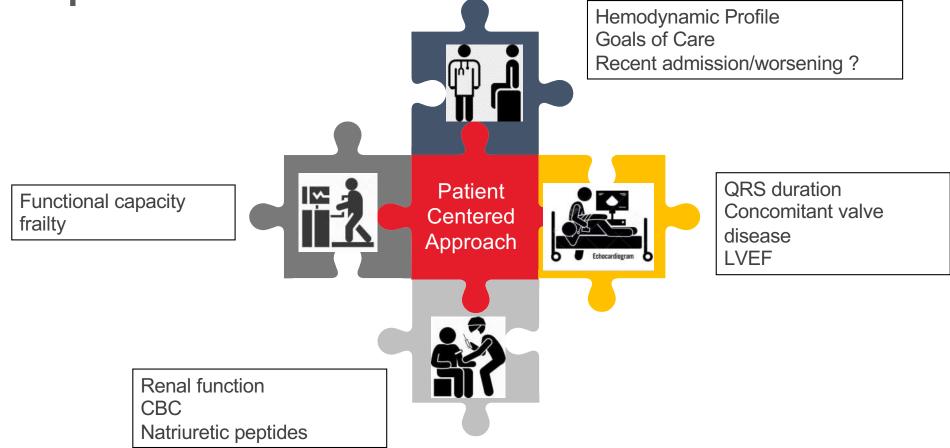
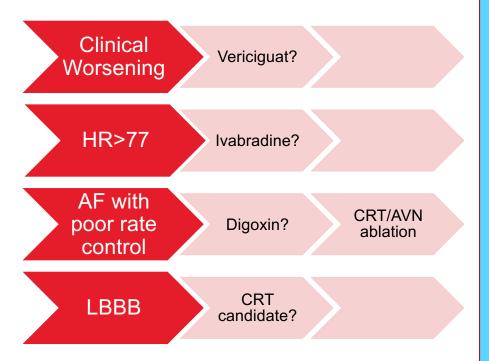

100% 90% 80% 70% 60% Months after 2010-2014 2015-2019 50% Implant 40% 12 80.5% 82.3% 69.1% 30% 24 73.1% 36 58.5% 63.5% 20% 48 48.9% 55.0% 10% 60 40.9% 46.8% 0% 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 6 0 3 **Months After Device Implant** At risk: ---- 10,944 3,981 1,965 3,219 311 --- 14,607 — 2010-2014 (n = 10,944, Deaths = 4,415) --- 2015-2019 (n = 14,607, Deaths = 3,982)

FIGURE 3 Survival After LVAD Implantation, 2015-2019 vs 2010-2014


% Survival on a Device

Varshney. JACC 2022;79:1092 43

Putting it All Together From the Patient's Perspective

Putting it All Together From the Patient's Perspective

Is there Opportunity to Advance or Initiate 4 Foundational Therapies?

Is the Patient a Candidate for Referral for Advanced Therapies? Have we sufficiently addressed goals of care and advanced directives?

Summary Points

- Substantial gains evident in the use of four foundational therapies
 - Care gaps exist
 - Have we made every attempt to initiate drug?
 - Have we attempted dose escalation?
 - Underuse continues to exist
- Additional therapies can be personalized to patient goals/unique profile
 - Majority of drugs will provide benefit on reducing HF hospitalization
 - Improvement in quality of live
 - Need to be balanced with potential side effects/risks
- Key to identify patients eligible for interventions that improve mortality
 - Transplant
 - MCS
 - Devices