

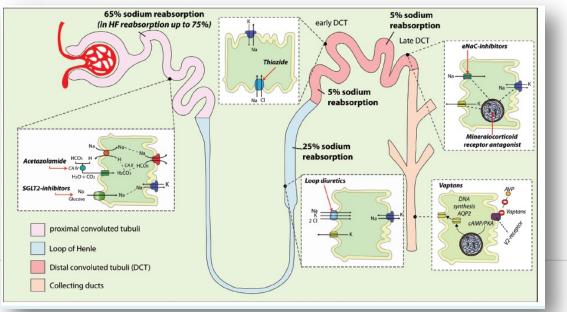
Prof. dr. Petar M. Seferovic, MD, PhD, FESC, FACC Vice-president, European Society of Cardiology President, Heart Failure Association of the ESC (2018-2020)

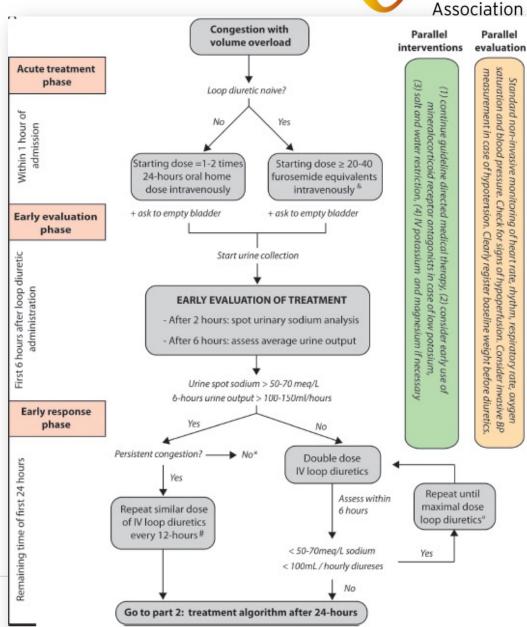
Emerging alternatives for decongesting HF

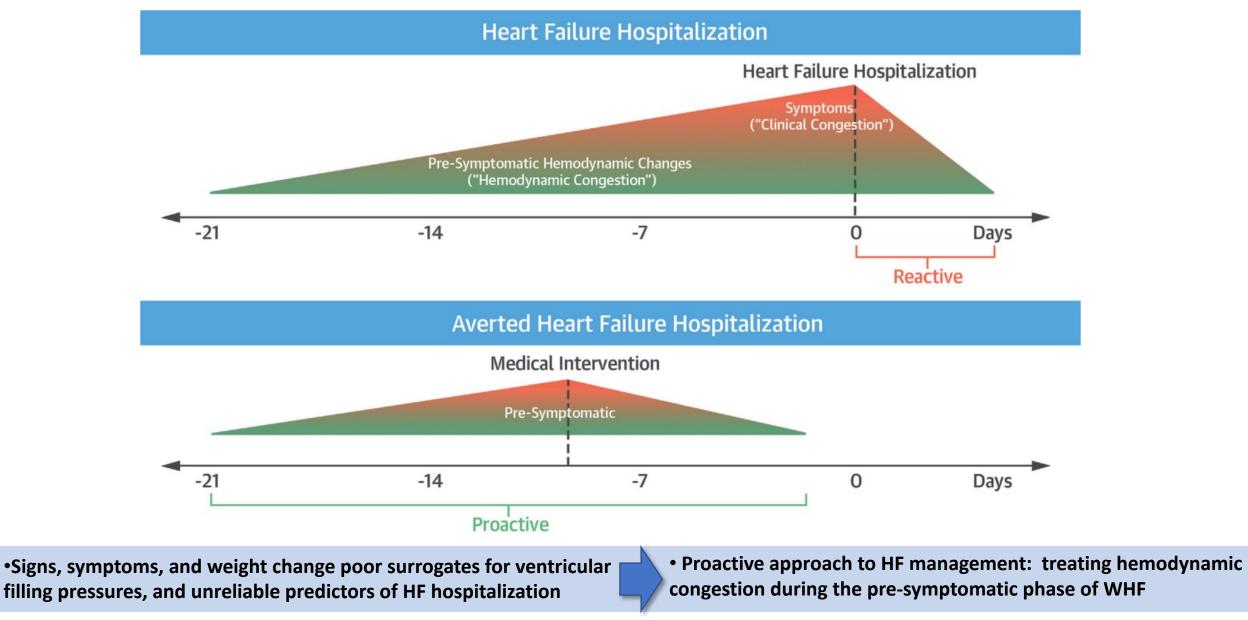
Academician, Serbian Academy of Sciences and Arts Professor of Cardiology, Belgrade University School of Medicine President, Heart failure Society of Serbia

European Journal of Heart Failure (2019) European Society doi:10.1002/eihf.1369

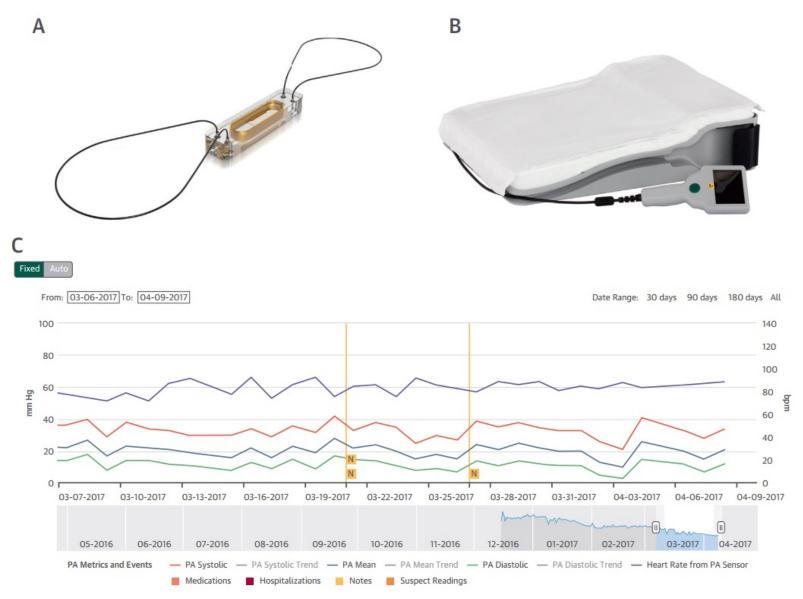
ESC


of Cardiology



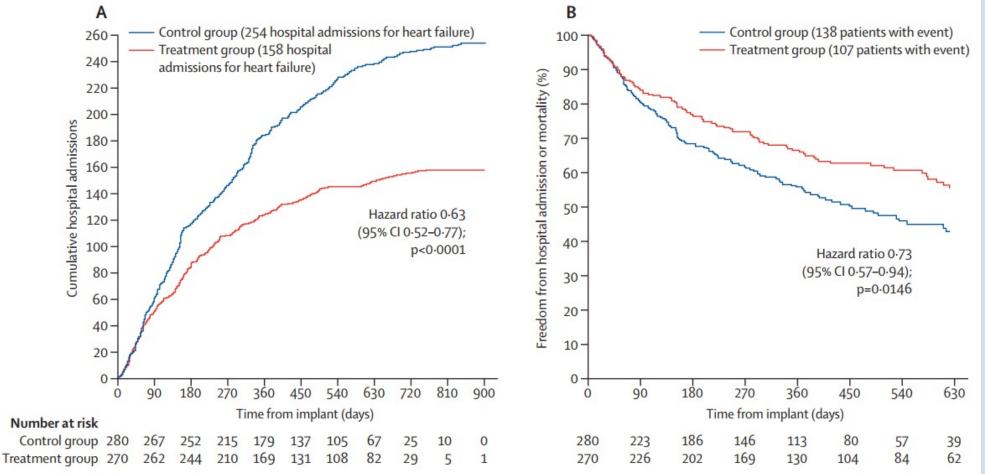

The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology

Wilfried Mullens^{1,2}*, Kevin Damman³, Veli-Pekka Harjola⁴, Alexandre Mebazaa⁵, Hans-Peter Brunner-La Rocca⁶, Pieter Martens^{1,2}, Jeffrey M. Testani⁷, W.H. Wilson Tang⁸, Francesco Orso⁹, Patrick Rossignol¹⁰, Marco Metra¹¹, Gerasimos Filippatos^{12,13}, Petar M. Seferovic¹⁴, Frank Ruschitzka¹⁵, and Andrew J. Coats¹⁶



The Concept of Pressure-Guided HF Therapy

Abraham, W.T. et al. J Am Coll Cardiol. 2017;70(3):389–98


Components of the CardioMEMS HF System

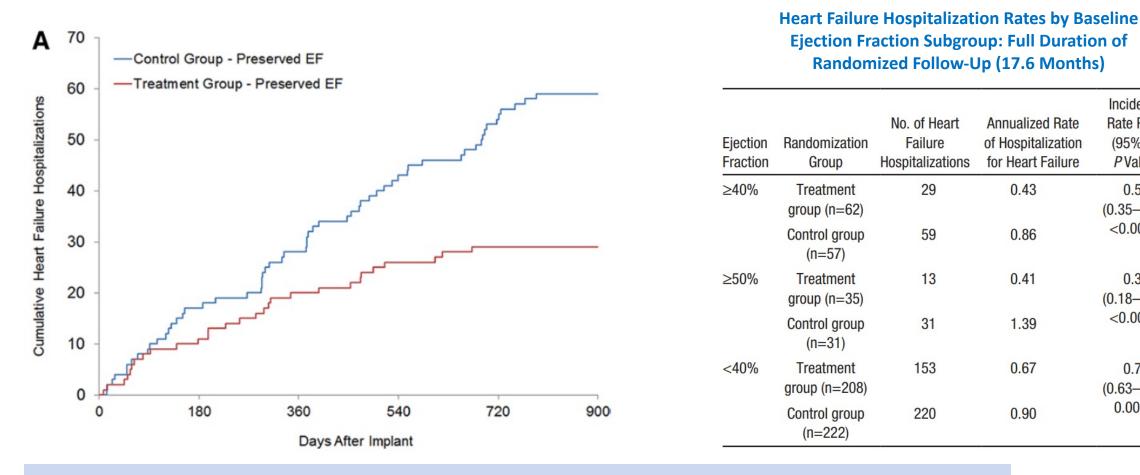
- Implanted into a branch of the PA during right heart catheterization
- Requires no leads or batteries
- Concurrently powered and interrogated via an external antenna.
- Pressure applied to the sensor causes deflections of the pressuresensitive surface, resulting in a characteristic shift in the resonant frequency
- Electromagnetic coupling achieved by an external antenna held against the patient's body or embedded in a pillow

CHAMPION Trial Endpoints

*Incluson criteria: NYHA III, irrespective of LVEF, previos HF hospitalization

•Freedom from device- or system-related complications-98.6%
•Overall freedom from pressure-sensor failures-100%

 6-month risk of HF hospital admission 30% lower in the W-IHM group (managed with daily measurement of PAP plus SoC


Generalisability to most patients with NYHA class III HF

• Major restriction:

exclusion stage IV or V chronic kidney disease (patients might be difficult to treat (ie, diurese)

CHAMPION Trial Study Group. Lancet 2011;377:658–66

CHAMPION Trial HFpEF subgroup

•The primary endpoint of HF hospitalization at **6m 46% lower in the treatment group (p < 0.0001)**. After average of 17.6 months of blinded follow-up, hospitalization rate was 50% lower (p < 0.0001)

Circ Heart Fail. 2014;7:935-944.

Incidence

Rate Ratio

(95% CI;

P Value)

0.50

(0.35 - 0.70;< 0.0001)

0.30

(0.18 - 0.48;

< 0.0001)

0.74

(0.63 - 0.89)

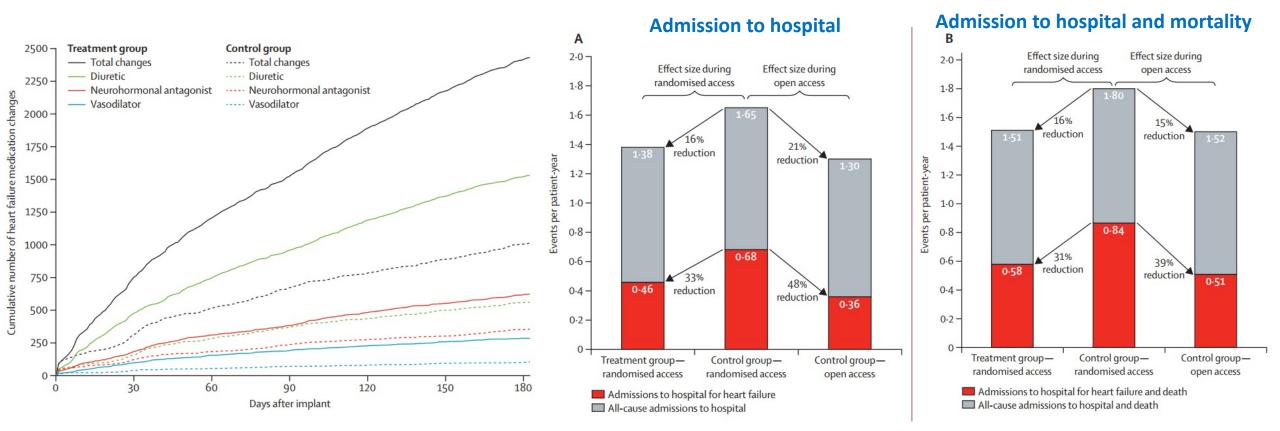
0.0010)

0.43

0.86

0.41

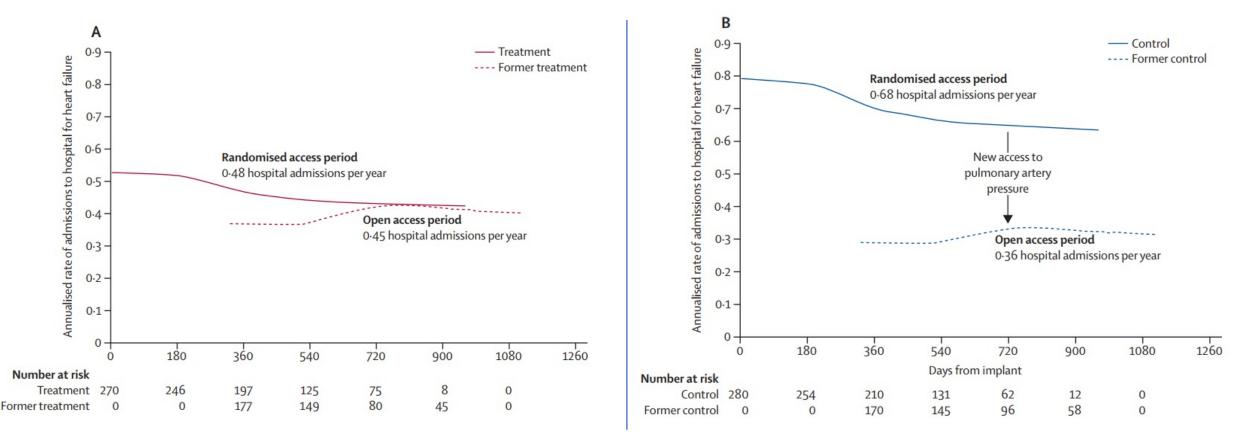
1.39


0.67

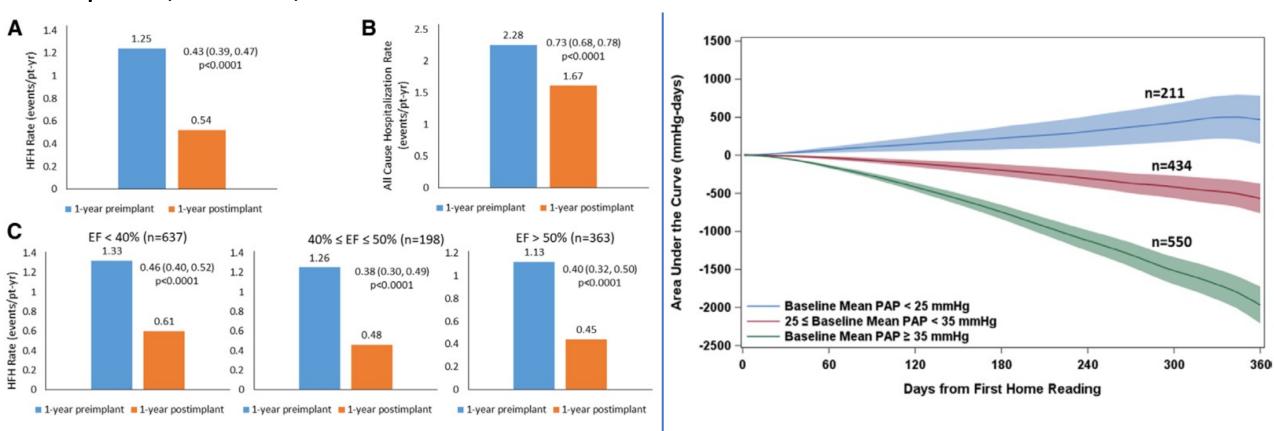
0.90

CHAMPION Trial

Complete follow-up results


*extended efficacy of this strategy over 18 months of randomised follow-up *clinical effect of open access to pressure information for an additional 13 months in patients formerly in the control group

•Patients with CHF managed with PAP information transmitted from an implantable device have better short-term and long-term clinical outcomes than patients receiving guideline-directed SoC


CHAMPION Trial Complete follow-up results

*extended efficacy of this strategy over 18 months of andomised follow-up and the clinical effect of open access to pressure information for an additional 13 months in patients formerly in the control group

•Patients with CHF managed with PAP information transmitted from an implantable device have **better short-term and long-term clinical outcomes than patients receiving guideline-directed SoC**

Pulmonary Artery Pressure-Guided Therapy CardioMEMS Post-Approval Study

*1200 patients, 104 centers, USA

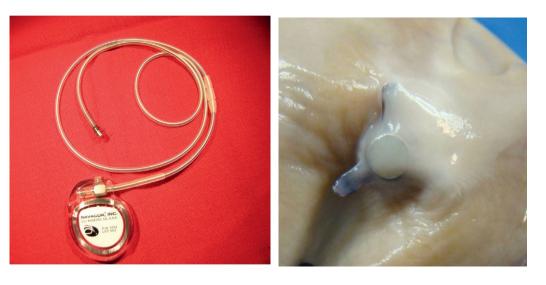
•In routine practice as in clinical trials, PA pressure-guided therapy for HF associated with lower PA pressures, lower rates of HF and all-cause hospitalization, and low rates of adverse events across a broad range of symptomatic HF and prior HF hosp.

Circ Heart Fail. 2014;7:935-944.

First- and Second-Generation LAP Sensors

HeartPOD left atrial pressure monitoring system

V-LAP left atrial pressure sensor


- PAP measurement alone may be an **inaccurate indicator of LVEDP** for many patients with HF
- Gradient between PAP and mean PCWP (over 5 mm Hg) in approximately one-half of all patients with HF
- Pulmonary artery hypertension (in 25% to 83% of HF) is a significant factor that affects the reliability of PAP measurement for estimating left-sided filling pressure.
- Critical to know what the pulmonary resistance is, or more accurately, the gradient between diastolic PAP and mean PCWP (value less dependent upon blood flow, stroke volume, and change in PCWP itself, but will reflect changes in compliance and distensibility of the pulmonary arteries.

J Am Coll Cardiol. 2017;70(3):389–98 J Am Coll Cardiol 2013;62:D100–8 Circulation 2012;126:975–90

LAPTOP-HF

HeartPOD LAP MONITORING SYSTEM

* Ambulatory NYHA III, with previous HF hospitalization or elevated BNP, regardless of ejection fraction.
 * Enrollment stopped early, due to a perceived excess of implant-related complications

*The tip of the sensor system lead implanted transvenously into the LA via the atrial septum. The implant powered and interrogated through the skin by wireless transmissions from the patient advisory module

*Autopsy in a patient after 37months of HeartPOD implantation showing endothelialisation of the pressure sensor (reproduced by EJHF with permission by St Jude Medical)

- The overall trial result negative (no reduction in a combined endpoint of recurrent HF hospitalizations and complications of HF therapy)
- When the results were analyzed using the CHAMPION trial endpoint of recurrent heart failure hospitalizations, the results of the LAPTOP-HF trial of were similar to those CHAMPION
- (Annualized HFH rates for treatment patients 0.40 vs 0.68 in Control patients, RRR 41%,P=.005)

Other pressure monitoring systems

RV MONITOR

ChronicleTM; Medtronic Inc., Minneapolis, MN, USA

REDUCEhf trial prematurely ended after enrolment of 400 patients. No benefit

INTRATHORACIC IMPEDANCE MONITORS:

Medtronic Inc. OptiVol Fluid Status Monitor St. Jude Medical (SJM) CorVueTM Congestion Monitor

LUNG FLUID MONITOR ReDS; Sensible Medical Innovations Ltd, Netanya, Israel.

BAROREFLEX ACTIVATION THERAPY TRIALS

Baroreceptor Activation Therapy

Physiologic target

Parasympathetic activation to quiet persistent sympathetic activation

Target population

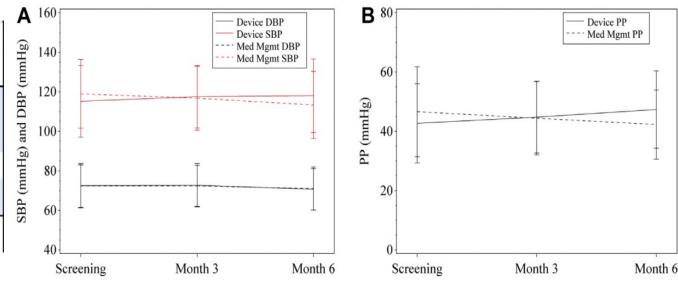
Heart failure with reduced ejection fraction on optimal medical therapy

Regulatory status

- Commercially available in Europe (CE Mark)
 PMA approval August 2019
- Pivotal study as part of expedited access pathway including balance of pre and post market data collection and innovative statistical methods

BAROSTIM HOPE4HF (Hope for Heart Failure) 2012 N=98	Design: Multicenter, RCT, open-label Inclusion: HF with LVEF #35%,NYHA functional class III Intervention: BAT vs. GDMT Primary endpoint: NYHA functional class, QoL, 6MWT, and 6-month safety	Improvements in all endpoints seen in the BAT group. Major adverse neurological and cardiovascular event-free rate was 97.2%
Gronda et al., 2014 Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac hemodynamics in heart failure: a proof-of-concept study. N=11	Design: Open-label Inclusion: NYHA functional class III, LVEF <40% on OMT Intervention: BAT for 6 months Primary endpoint: Measurements of muscle sympathetic nerve activity and measure of QoL and functional capacity	BAT safe and provided chronic improvement in MSNA and clinical variables. May improve these outcomes via modulation of autonomic balance
Zile et al., 2015 Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction: safety and efficacy in patients with and without cardiac resynchronization therapy N=140 (45 with CRT)	Design: Post hoc analysis Inclusion: Inclusion in BAROSTIM HOPE4HF (Hope for Heart Failure Study), or BAROSTIM NEO System in the Treatment of Heart Failure trial (LVEF <35% and NYHA functional class III) Intervention: Post hoc subgroup analysis of efficacy and safety of BAT in patients with and without CRT Primary endpoint: MANCE, LVEF, QoL scores, and 6MWT	BAT safe and was associated with improved QoL, exercise capacity, NT- proBNP, ejection fraction, and rate of HF hospitalizations in GDMT-treated patients with NYHA functional class III HF. These effects were most pronounced in patients not treated with CRT
Weaver et al., 2016 Surgical experience and long-term results of baroreflex activation therapy for heart failure with reduced ejection fraction. PMID 28043438 (8) N=146 (76 randomized to BAT)	Design: Multicenter, RCT, open-label Inclusion: Symptomatic HF despite GDMT Intervention: Treatment with BAT and GDMT, or GDMT alone Primary endpoint: 6MWT, NYHA functional class, NT-proBNP level, and QoL	Phase II trial of BAT in HFrEF indicates that the procedure was safe with a pacemaker-like safety profile and a short learning curve.

Barostim HOPE4HF Endpoints


*N=98, GDMT with BAT vs without BAT, LVEF≤35% and NYHA class III

Effect of BAT on Primary Efficacy End Points (Change From Baseline to 6 Months)

Effect of BAT on BP

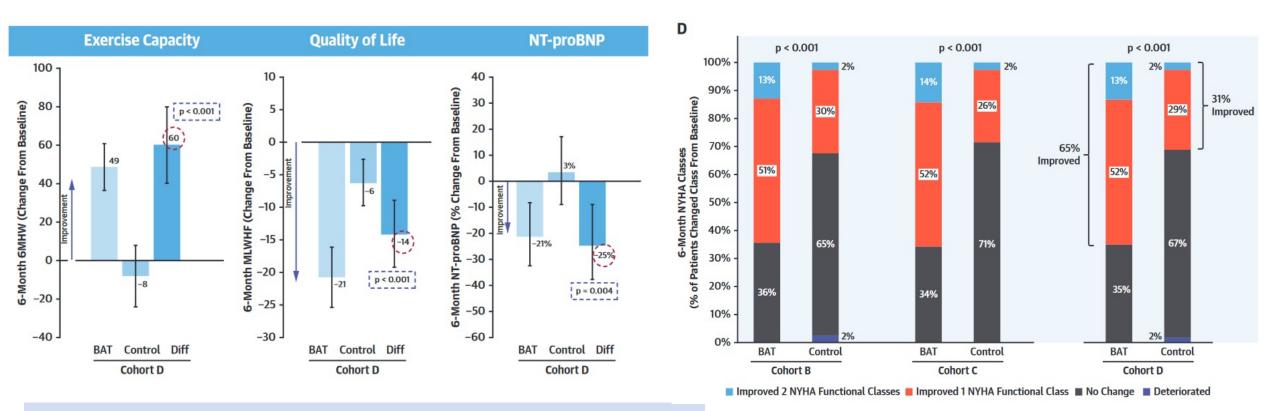
	Tr	eatment Group		Control Group	Difference	
	n	$\textbf{Mean} \pm \textbf{SE}$	n	$\textbf{Mean} \pm \textbf{SE}$	Mean ± SE	p Value
NYHA functional class (% improved, same, worse)	64	55%, 42%, 3%	54	24%, 67%, 9%	0.0	02
MLWHFQ QoL	64	$-17.4^{*} \pm 2.8$	54	2.1 ± 3.1	-19.5 ± 4.2	<0.001
6MHW distance (m)	56	59.6* ± 14.1	43	1.5 ± 13.2	58.1 ± 19.8	0.004

*p < 0.001 for within-group change.

Barostim HOPE4HF

Endpoints

* N=98, GDMT with BAT vs without BAT; LVEF≤35% and NYHA class III


	_	US and OUS		US				OUS	
	Device (n = 57)	Med Mgmt (n = 50)	Difference (Mean ± SE)	Device (n = 38)	Med Mgmt (n = 32)	Difference (Mean \pm SE)	Device (n = 19)	Med Mgmt (n = 18)	Difference (Mean \pm SE)
Number of HF hospitalizations pe	er year								
Before enrollment	$\textbf{0.63} \pm \textbf{1.5}$	$\textbf{0.36} \pm \textbf{1.1}$	$\textbf{0.27} \pm \textbf{0.3}$	$\textbf{0.58} \pm \textbf{1.2}$	$\textbf{0.13} \pm \textbf{0.5}$	$\textbf{0.45}^{\texttt{*}} \pm \textbf{0.2}$	$\textbf{0.74} \pm \textbf{1.9}$	$\textbf{0.78} \pm \textbf{1.7}$	-0.04 ± 0.6
Post-randomization	0.14 ± 0.5	$\textbf{0.31} \pm \textbf{1.0}$	-0.17 ± 0.1	0.11 ± 0.5	$\textbf{0.24} \pm \textbf{1.0}$	-0.13 ± 0.2	$\textbf{0.21} \pm \textbf{0.6}$	$\textbf{0.44} \pm \textbf{0.9}$	-0.23 ± 0.2
Change from pre to post	$-0.49^\dagger\pm0.2$	-0.05 ± 0.2	-0.44 ± 0.3	$-0.47^\dagger\pm0.2$	$\textbf{0.11} \pm \textbf{0.2}$	$-0.58^\dagger\pm0.3$	-0.53 ± 0.5	-0.33 ± 0.5	-0.19 ± 0.7
Negative binomial 6 months post-randomization	0.12	0.25	52% RR‡	0.07	0.16	54% RR‡	0.20	0.42	52% RR‡
HF hospitalizations days per year									
Before enrollment	6.95 ± 20.7	$\textbf{2.40} \pm \textbf{8.6}$	4.55 ± 3.1	$\textbf{2.21} \pm \textbf{4.6}$	$\textbf{0.44} \pm \textbf{1.7}$	$1.77^{\dagger}\pm0.9$	16.42 ± 33.9	$\textbf{5.89} \pm \textbf{13.6}$	10.53 ± 8.6
Post-randomization	$\textbf{0.67} \pm \textbf{2.5}$	$\textbf{2.48} \pm \textbf{7.4}$	$-1.82^{\ast}\pm1.0$	$\textbf{0.58} \pm \textbf{2.5}$	$\textbf{0.88} \pm \textbf{4.0}$	-0.30 ± 0.8	$\textbf{0.84} \pm \textbf{2.6}$	$\textbf{5.33} \pm \textbf{10.8}$	$-4.49^{*} \pm 2.5$
Change from pre to post	$-6.28^{\dagger}\pm2.7$	$\textbf{0.08} \pm \textbf{1.7}$	$-6.36^{+} \pm 3.3$	$-1.63^{\ast}\pm0.8$	$\textbf{0.44} \pm \textbf{0.8}$	$-2.07^{*} \pm 1.2$	-15.58 ± 7.7	-0.56 ± 4.5	-15.02 ± 9.1
Negative binomial 6 months post-randomization	0.38	2.10	82% RR*‡	0.09	0.67	86% RR‡	0.80	4.91	84% RR‡

•BAT safe and improves functional status, QoL, exercise capacity, NTpro–BNP and possibly the burden of heart failure hospitalizations, •Patients with subcutaneous ICD or left ventricular assist devices excluded

Abraham W et al. JACC HF 2015 Jun;3(6):487-496.

BeAT-HF Endpoints

*N=140, GDMT with BAT vs without BAT, NYHA class III or class II (recent history of NYHA functional class III); LVEF≤35%; stable GDMT for 4 weeks; and no Class I indications for CRT

•BAT safe and significantly improved QOL, exercise capacity, and NT-proBNP

•Patients with subcutaneous ICD or left ventricular assist devices excluded

Zile M et al. J Am Coll Cardiol 2020;76:1–13

INTERATRIAL SHUNT DEVICE TRIALS

Interatrial Shunt Device	Sondergaard et al., 2014 Transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel interatrial implant to lower left atrial pressure. N=11	Design: Open-label Inclusion: LVEF ≥45%, at least 1 HF hospitalization in the past year, PCWP at rest ≥15 mm Hg or during exercise ≥25 mm Hg Intervention: Treatment with IASD Primary endpoint: SADEs through 30 days	The IASD was successfully implanted in a cohort of HFpEF patients and resulted in improved hemodynamic values at rest, with encouraging early clinical response
	Malek et al., 2015 Clinical outcome of transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel implant. N=11	Design: Open-label Inclusion: LVEF ≥45%, at least 1 HF hospitalization in the past year, PCWP at rest ≥15 mm Hg or during exercise ≥25 mm Hg Intervention: Treatment with IASD Primary endpoint: SADEs through 30 days	Placement of the IASD in a cohort of HFpEF patients produced decreased filling pressures and was associated with clinical improvement at 1 yr in most patients
Physiologic target Shunting of blood volume from left to right heart to	Kaye et al., 2016 1-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction. N=64	Design: Open-label Inclusion: Chronic symptomatic HF (NYHA functional class II or III/ambulatory class IV), LVEF ≥40%, elevated left ventricular filling pressures Intervention: Implantation of interatrial shunt Primary endpoint: MACCE	Evidence of safety and sustained clinical benefit in HFpEF patients 1 yr after interatrial septal shunt device implantation
relieve left atrial pressure Target population Heart failure (with or without LVEF) with elevated left	Del Trigo et al., 2016 Unidirectional left-to-right interatrial shunting for treatment of patients with heart failure with reduced ejection fraction: a safety and proof-of- principle cohort study. N=10	Design: Open-label (Canada) Inclusion: NYHA functional class III with chronic HFrEF Intervention: Implant of V-Wave shunt device after trans-septal catheterization Primary endpoints: Clinical and echocardiography evaluations at baseline, month 1, and month 3	Demonstrates initial safety and early beneficial clinical and hemodynamic outcomes in patients with HFrEF
Regulatory status No devices currently approved to establish left to right shunting in heart	Shah et al., 2018 1-year safety and clinical outcomes of a transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction in the Reduce Elevated Left Atrial Pressure in Patients With Heart Failure (REDUCE LAP-HF I) Trial: a randomized clinical trial. N=44	Design: Multicenter, RCT, double-blind, sham-controlled Inclusion: Chronic symptomatic HF, ongoing stable GDMT, LVEF ≥40%, elevated left atrial pressure with gradient Intervention: Implantation of IASD, or intracardiac echocardiogram Primary endpoint: Change in supine exercise PCWP from baseline	Demonstrates the long-term patency of the IASD. Through 1 yr of follow-up, IASD treatment appears safe, with no significant differences in MACCRE in patients receiving IASD compared with those who received sham- controlled treatment
 o right shunting in heart failure Ongoing pivotal evaluation for this indication by multiple manufacturers 	Hasenfuss et al., 2016 A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicenter, open-label, single-arm, phase 1 trial. N=68	Design: Open-label Inclusion: Symptoms of HFpEF despite pharmacological therapy, LVEF ≥40%, PCWP at rest >15 mm Hg or exercise >25 mm Hg Intervention: Treatment with IASD Primary endpoints: Safety and performance of IASD at 6 months, measure of clinical efficacy including function capacity and clinical status	Implantation of this IASD is feasible, appears safe, and reduces left atrial pressure during exercise

Intratrial shunt device Endpoints in HFpEF and HFmREF

IASD[®], DC Devices Inc., Tewksbury, MA, US

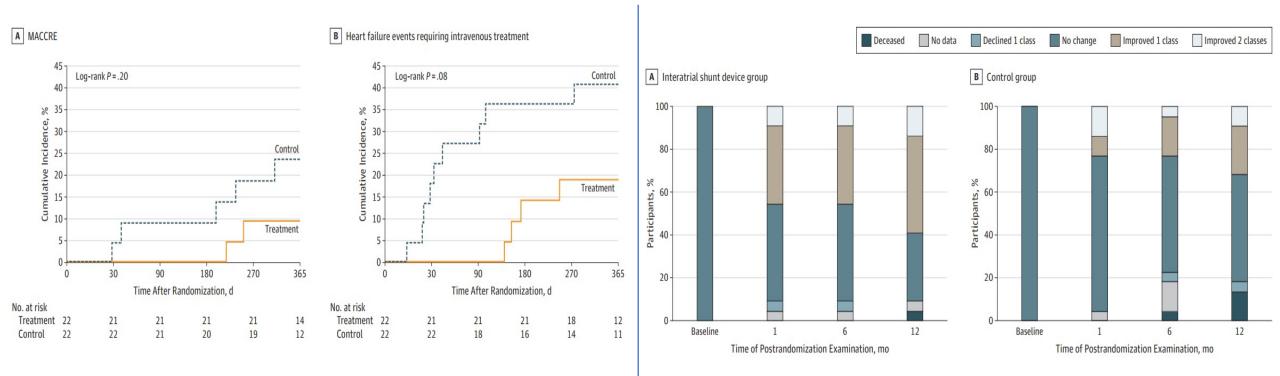
	HFH		HFH NYHA class		6 MWTD	(M)	MLWHF		
	Prior year	Year after	Baseline	1 Year	Baseline	1 Year	Baseline	1 Year	
Median	1	0	3	2.5	334	364	58	29.5	
Range	0 to 6	0 to 5	III-IV	II–III	52-540	240-494	17-70	14-62	
Mean	1.5	0.8 ¹	3.2	2.5^{2}	309.6	351.7 ³	54.9	36.3 ⁴	
STDEV	1.90	1.75	0.42	0.53	158.8	79.4	17.0	16.5	

HFH = heart failure hospitalizations, 6MWTD = six minute walk test distance, MLWHF = Minnesota Living With Heart Failure, STDEV - standard deviation.

 1 p = 0.030 vs. baseline.

- 2 p = 0.017 vs. baseline.
- 3 p = NS vs. baseline.
- ⁴ p = 0.057 vs. baseline.

PCWP had significantly decreased by 28% from 19.0 ± 5 to14 ± 3 mmHg (p= 0.005). RAP and SPAP unchanged.


Patient	nt mRAP (mmHg)		mPAP (mn	nHg)	mPCWP		CI (L/min/m		PVRI (Wood	/m²)
	Baseline	30 days	Baseline	30 days	Baseline	30 days	Baseline	30 days	Baseline	30 days
1	5	9	25	23	16	12	2.4	3.5	3.8	3.1
2	15	15	39	20	20	12	2.6	3.3	7.3	2.4
3	11	9	36	39	17	13	2.1	4.7	9.0	5.5
4	7	16	27	27	20	18	2.0	3.5	3.5	2.6
5	12	9	36	25	25	9	2.2	2.9	5.0	5.5
6	12	12	37	32	23	18	2.1	2.3	6.7	6.1
7	N/A	N/A	N/A	N/A	16	N/A	2.7	N/A	N/A	N/A
8	11	9	27	24	18	13	3.3	2.3ª	2.7	4.1
9 ⁶	14	14	35	30	20	16	2.0ª	3.9	7.5	3.6
10 ^b	14	11	22	19	18	11	1.9ª	2.6	2.1	3.1
11 ^b	7	N/A	19	26	17	18	1.6ª	N/A	1.3	N/A
Median (range)	12 (5-14)	9 (9-16)	31 (19-39)	26 (19-39)	19 (6-25)	13 (9-18)	2.3 (1.6-3.3)	-	4.4 (1.3-9.5)	-
Mean ± SD	12 ± 3	11 ± 3	30 ± 7	27 ± 6	19±5	14 ± 3	2.4 ± 0.4	-	4.9 ± 2.7	-
	P = NS		P = NS		P = 0.005					
Patient	N	T-proBNI	Р	6-M	V D (m)		MLWHF sco	re	NYHA cla	ss

Patient	NT-pro	NT-proBNP		VD (m)	MLWHI	score	NYHA	
	Baseline	30 days	Baseline	30 days	Baseline	30 days	Baseline	30 days
1	461	330	368	410	34	19	Ш	Ш
2	416	381	238	ND	70	63	Ш	IV
3	81	89	330	328	17	24	ш	III
4	141	141	128	252	62	30	IV	III
5	54	53	540	522	47	9	Ш	1
6	N/A	N/A	338	364	46	25	111	П
7	N/A	N/A	52	104	66	68	ш	III
8	22	8	360	420	56	16	111	III
9 ⁶	222	368	180	330	78	45	III	Ш
10 ^b	148	160	450	465	47	32		Ш
11 ^b	193	383	480	480	60	30	IV	Ш
Median (range)	148 (22-461)	160 (8-368)	338 (52-540)	387 (104-522)	56 (17-78)	30 (9-68)		
Mean ± SD	193 ± 153	212 ± 152	322 ± 151	368 ± 123	53 ± 17	18 ± 19		
	P = NS		P = 0.025		P = 0.005			

Sondergaard et al. Eur J Heart Fail 2014;16:796-801.

Intratrial shunt device Primary endpoints in HFpEF and HFmREF

*N=44, IASD implantation vs sham, NYHA III-IV, LVEF≥ 40%, exercise PCWP≥25 mm Hg, PCWP-RAP gradient ≥5 mm Hg.

• 1 year of follow-up, IASD treatment safe, no significant differences in MACCRE (major adverse cardiac, cerebrovascular, or renal events) Sondergaard et al. Eur J Heart Fail 2014;16:796–801.

Intratrial shunt device Secondary endpoints in HFpEF and HFmREF

*N=44, IASD implantation vs sham, NYHA III-IV, LVEF≥ 40%, exercise PCWP≥25 mm Hg, PCWP-RAP gradient ≥5 mm Hg.

	Median (Interquartile Range)		
Measure	Participants With Interatrial Shunt Device (n = 21)	Control Participants (n = 22)	P Value
Cardiovascular death			
Available data, No. (%) [95% CI] ^{a,b}	1 (4.8) [0.1-23.8]	1 (4.5) [0.1-22.8]	>.99
Kaplan-Meier cumulative incidence, % (95% CI) ^c	4.8 (0.0-19.2)	5.0 (0.0-17.6)	.99
Total heart failure-associated admissions/visits, rate per patient-year (95% CI) ^d	0.22 (0.08-0.58)	0.63 (0.33-1.21)	.06
Days alive and without hospitalization	353 (339-363)	340.5 (330-353)	.16
Days alive without heart failure-associated hospitalization	359 (351-365)	351 (331-365)	.17
Hospitalizations for a heart failure-associated event per patient, No. (%)			.09
0	18 (85.7)	14 (63.6)	
1	1 (4.8)	4 (18.2)	12
2	0 (0.0)	1 (4.5)	.13
≥3	2 (9.5)	3 (13.6)	
	2 (0.0)	5 (15:5)	

• 1 year of follow-up, IASD treatment safe, no significant differences in MACCRE (major adverse cardiac, cerebrovascular, or renal events) Sondergaard et al. Eur J Heart Fail 2014;16:796–801.

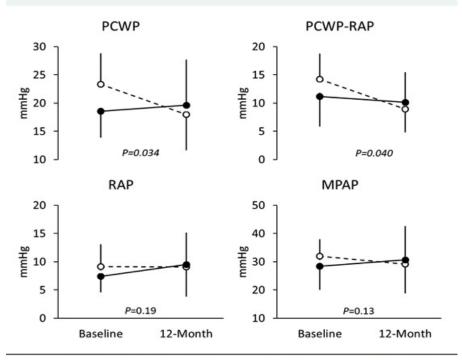
Intratrial shunt device Endpoints in HFrEF and HFpEF

V-Wave®, Caesarea, Israel

*N=38, single armopen lable trial, NYHA III or ambulatory class IV

TABLE 2 Procedural and 12-Month Follow-Up Outcome (N = 38) 38	es Measures	TABLE 3 Functional, Echocardic 3- and 12-Month Follow-Up
Procedural/in-hospital		
Successful device implantation Shunt patency on procedural TEE	38 (100) 38 (100)	Functional status/quality of life
Device embolization/dislocation Need for a second device Procedural time, min Hospitalization length (days)	0 0 72 ± 24 1 (1-2)	NYHA functional class II or IV NYHA functional class I or II KCCQ/MLHFQ (improvement ≥5 6-min walk distance (m)
Device- or procedure-related MACNE Cardiac tamponade Safety outcomes (12-month follow-up)	1 (2.6) 1 (2.6)	Laboratory parameters In NT-pro BNP (pg/ml) eGFR (ml·min ⁻¹ ·1.73 m ⁻²)
Cumulative device- or procedure-related MACNE Death Stroke Cardiac tamponade	0 0 1 (2.6)	Echocardiographic variables LVEF, % (HFrEF) LVEF, % (HFmrEF, HFpEF) MR grade†
Device embolization Device infection Reintervention or surgery Overall device- or procedure-related MACNE	0 0 1 (2.6)	LAVI (ml/m²) TAPSE (mm) Cardiac output (l/min) Q _p /Q ₅
Cumulative all-cause MACNE Death Stroke	2 (5.2) 0	Hemodynamic status PCWP, mm Hg RAP, mm Hg Mean PAP, mm Hg
Systemic embolism Cardiac tamponade Myocardial infarction	0 1 (2.6) 0	Values are n (%) or mean ± SD. *Kruska data, respectively. †MR grade: 1 = none KCCQ = Kansas City Cardiomyopathy

Values are n (%), mean ± SD, or median (interguartile range).


esophageal echocardiography.

MACNE = major adverse cardiovascular and neurologic event(s); TEE = trans-

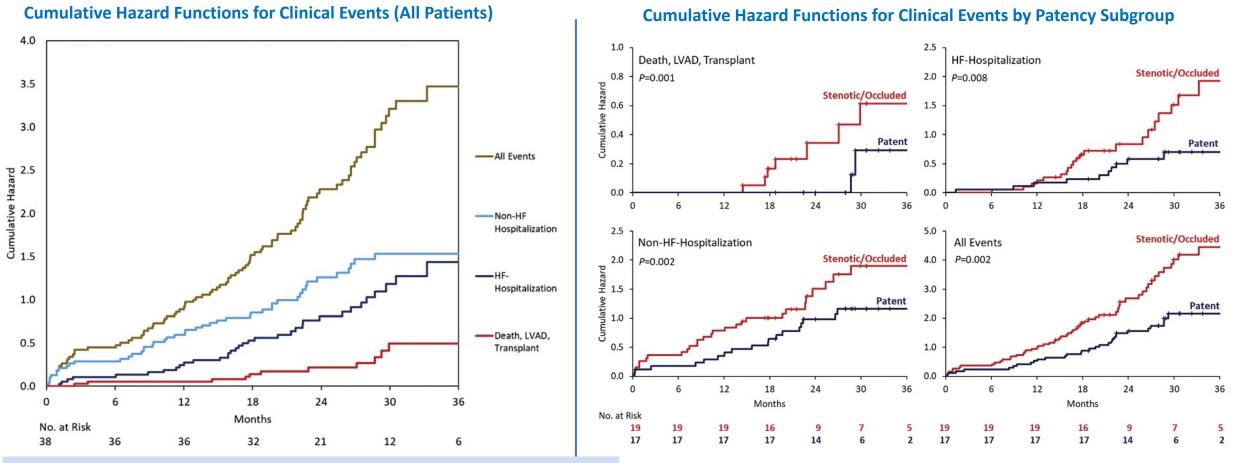
TABLE 3 Functional, Echocardiographic, and Hemodynamic Parameters at Baseline and 3- and 12-Month Follow-Up								
	Baseline (n = 38)	3 Months (n = 36)	12 Months (n = 36)	p Value*				
Functional status/quality of life								
NYHA functional class III or IV	38 (100)	8 (22)	14 (39)	< 0.001				
NYHA functional class I or II	0 (0)	28 (78)	22 (61)					
KCCQ/MLHFQ (improvement ≥5 points)	-	27 (74)	26 (73)	< 0.001				
6-min walk distance (m)	290 ± 112	$\textbf{340} \pm \textbf{94}$	$\textbf{324} \pm \textbf{105}$	0.012				
Laboratory parameters								
In NT-pro BNP (pg/ml)	7.5 ± 0.9	7.4 ± 1.0	7.5 ± 0.9	0.83				
eGFR (ml·min ⁻¹ ·1.73 m ⁻²)	54 ± 20	55 ± 23	53 ± 22	0.92				
Echocardiographic variables								
LVEF, % (HFrEF)	26 ± 7	27 ± 9	28 ± 8	0.54				
LVEF, % (HFmrEF, HFpEF)	50 ± 9	52 ± 10	54 ± 9	0.74				
MR gradet	3.9 ± 1.5	3.5 ± 1.2	3.5 ± 1.3	0.51				
LAVI (ml/m ²)	42 ± 13	42 ± 13	41 ± 15	0.84				
TAPSE (mm)	16 ± 4	17 ± 4	16 ± 4	0.94				
Cardiac output (l/min)	1.9 ± 1.0	1.9 ± 0.5	1.9 ± 0.4	0.92				
Qp/Qs	$\textbf{0.99} \pm \textbf{0.11}$	$\textbf{1.17} \pm \textbf{0.12}$	$\textbf{1.10} \pm \textbf{0.13}$	0.005				
Hemodynamic status								
PCWP, mm Hg	21 ± 5	20 ± 7	19 ± 7	0.49				
RAP, mm Hg	8 ± 4	9 ± 5	9 ± 4	0.51				
Mean PAP, mm Hg	30 ± 7	29 ± 8	30 ± 10	0.97				

Values are n (%) or mean \pm SD. *Kruskal-Wallis test and one-way analysis of variance for ordinal and interval data, respectively. †MR grade: 1 = none to 7 = severe.

KCCQ — Kansas City Cardiomyopathy Questionnaire; LAVI = left atrial volume index; MLHFQ = Minnesota Living With Heart Failure Questionnaire; MR = mitral regurgitation; PAP = pulmonary artery pressure; PCWP = pulmonary capillary wedge pressure; RAP = right atrial pressure; TAPSE = tricuspid annular plane systolic excursion; other abbreviations as in Table 1. FIGURE 4 Changes in Hemodynamic Parameter Values According to Patency Subgroup at Baseline and 12 Months

Patent shunt patients **(open circles)** and stenotic or occluded shunt patients **(solid circles)**. P values are for comparisons between subgroups of the differences between baseline and 12 months. MPAP = mean pulmonary artery pressure; PCWP = pulmonary capillary wedge pressure; RAP = right atrial pressure.

Del Trigo et al.Lancet 2016; 387: 1290–97 JACC Cardiovascular interventions. 2018 Nov 26;11(22):2300-2310

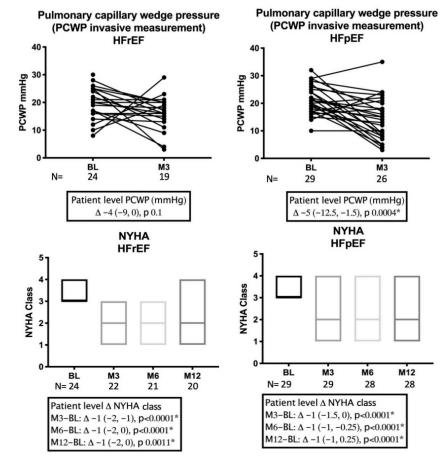

Significant improvement in NYHA, QoL, 6MWD By 12 months, nearly 50% of shunts stenotic

Intratrial shunt device Endpoints in HFrEF and HFpEF

V-Wave®, Caesarea, Israel

 Unknown: Long-term effects of chronic right heart loading, impact of development of atrial arrhythmias (anticoagulation, antiplatelets), mechanical device-device interactions, paradoxical embolism

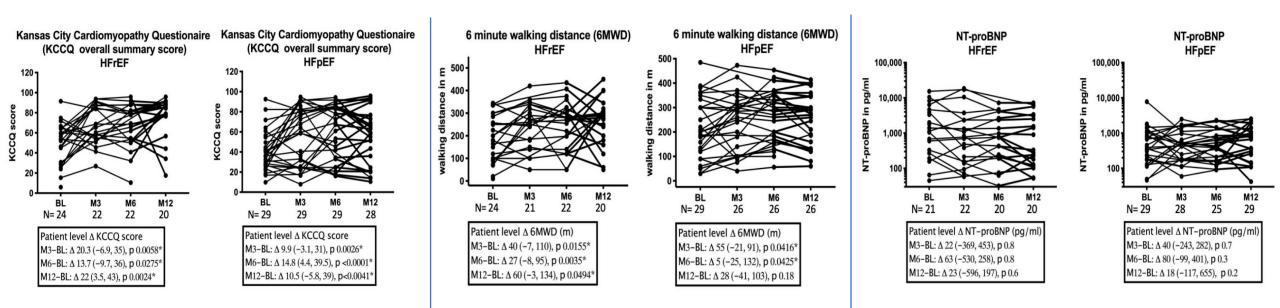
JACC Cardiovascular interventions. 2018 Nov 26;11(22):2300-2310


PRELIEVE study Endpoints in HFrEF and HFpEF

The Atrial Flow Regulator (AFR); Occlutech, Istanbul, Turkey

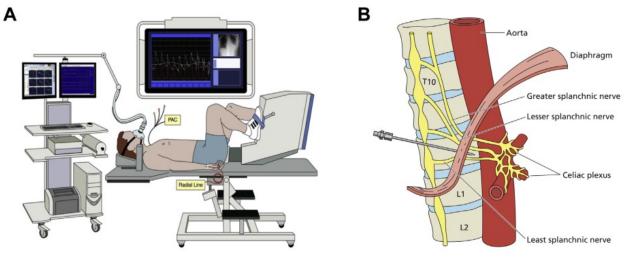
*N=53 patients (HFrEF n=24 and HFpEF n=29), prospective, non-randomized, first-in-man study in symptomatic HF

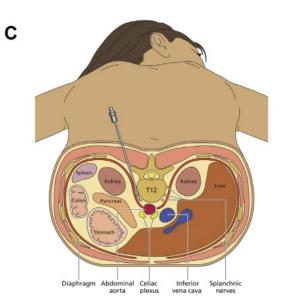
	<u>All</u> patients n=53	HFrEF patients n=24	<u>HFpEF</u> patient sn=29
Device removal after implantation,n (%)	0	0	0
Death, n (%)	3 (6)	3 (13)	0
Stroke, n (%)	0	0	0
Myocardial infarction, n (%)	1 (2)	0	1 (3)
Worsening of renal function or newimpairment (without need for dialysis), n (%)	11 (20)	4 (17)	7 (24)
Hospitalisation for heart failure, total events	11	6	5
Hospitalisation for heart failure, n of patients with at least 1 event(%)	6 (11)	3 (13)	3(10)
Atrial fibrillation (new onset or worsening), total events	14	6	8
Atrial fibrillation (new onset or worsening), n of patients with atleast 1 event (%)	11 (20)	5 (21)	6 (21)
SADE, n of patients (%)	1 (2)	0	1 (3)*
SAE rate, total events	64	33	31
Cardiovascular SAE, total events	26	10	16
SAE, n of patients with at least one	25 (47)	13 (54)	12 (41)


Paitazoglou et al. EJHF2021 Feb 8. doi: 10.1002/ejhf.2119

PRELIEVE study Endpoints in HFrEF and HFpEF

The Atrial Flow Regulator (AFR); Occlutech, Istanbul, Turkey


*N=53 patients (HFrEF n=24 and HFpEF n=29), prospective, non-randomized, first-in-man study in symptomatic HF

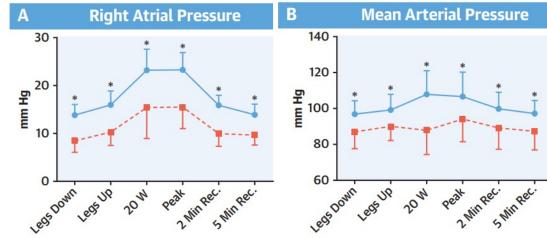


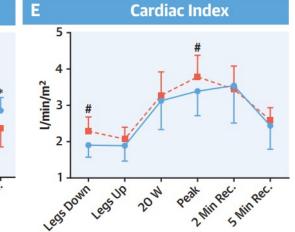
- Implantation of the AFR device in HF patients was feasible.
- No shunt occlusion, stroke or new right HF during 1year follow-up, clinical improvements in certain patients.

Splanchnic Nerve Blockade

*N=15, NYHA class II to III, PWCP≥15 mm Hg and/or ≥25 mm Hg at peak exercise, despite GDMT

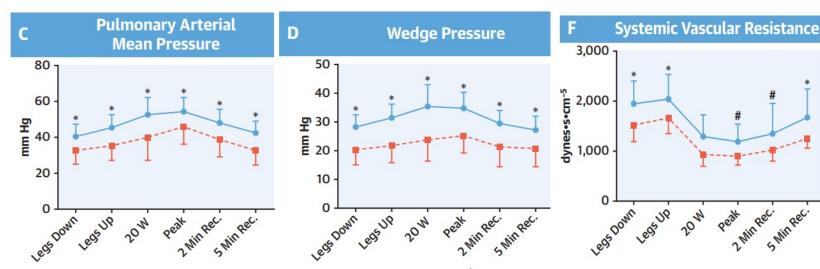
• Transient effect of Ropivacaineinduced acute SNB

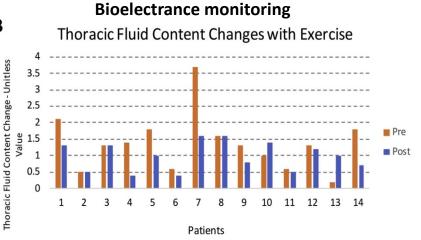

• Probable mechanisms:


- More blood stored in splanchnic vascular reservoir
- Reduced shifts of blood from the splanchnic to pulmonary vasculature beds
- Reduced systemic arterial resistance by arterial vasodilation maintained cardiac output despite lower filling pressures.

Fudim M et al. J Am Coll Cardiol HF 2020

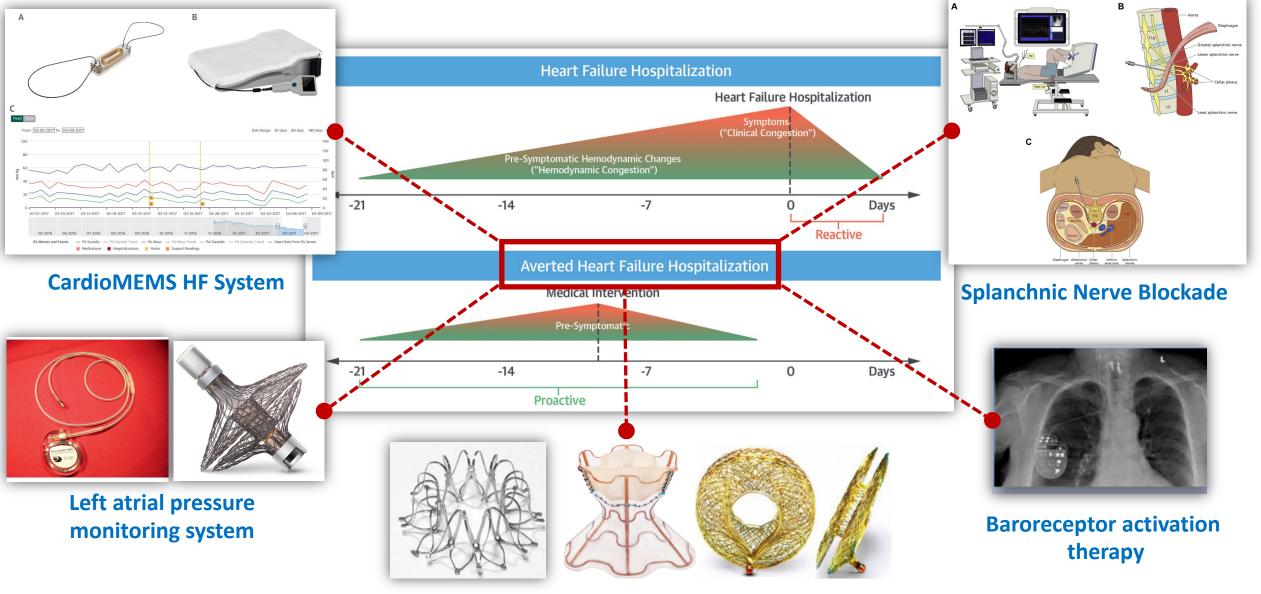
Splanchnic Nerve Blockade


Hemodynamic and Cardiopulmonary Exercise Functional Parameters

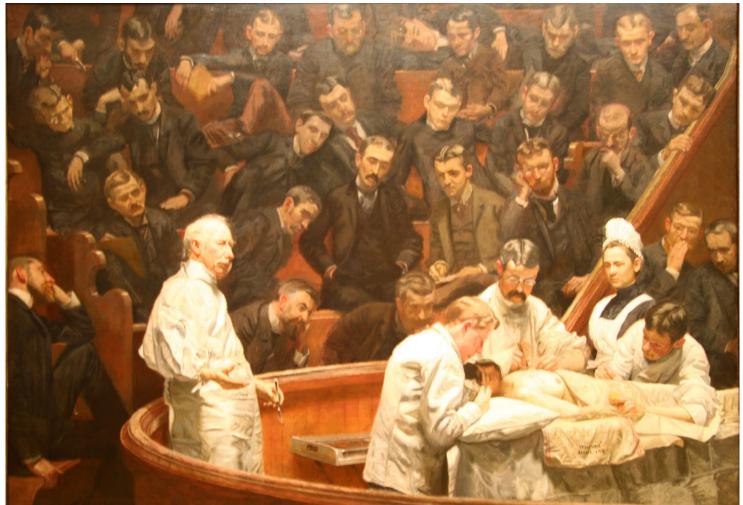


В

	Pre-SNB	Post-SNB	p Value
Workload, W	33 ± 24	50 ± 30	0.019
Exercise time, min (s)	$\textbf{4:48} \pm \textbf{96}$	5:03 ± 91	0.181
Peak VO ₂ , ml/kg/min	9.1 ± 2.5	$\textbf{9.8} \pm \textbf{2.7}$	0.053
VE/VCO ₂ slope, %	$\textbf{37.1} \pm \textbf{7.6}$	$\textbf{35.1} \pm \textbf{6.0}$	0.067
RER	1.14 ± 0.13	1.08 ± 0.11	0.081
Lactate mg/dl	$\textbf{4.5} \pm \textbf{1.8}$	4.9 ± 1.7	0.786
Borg perceived exertion*	17.5 ± 1.5	17.9 ± 1.5	0.189
Shortness of breath [†]	8.6 ± 1.6	6.7 ± 3.3	0.032
Leg fatigue‡	$\textbf{6.1} \pm \textbf{4.7}$	$\textbf{7.8} \pm \textbf{3.4}$	0.057
6-min walk distance, m	311 ± 68	330 ± 73	0.033
Oscillatory breathing during exercise	6/15	3/15	0.082



			-		


🔶 Pre 🛛 🛨 Post

Emerging alternatives for decongesting HF

Intratrial shunt devices

The art of being critical is a key to the excellence in medicine

Thomas Eakins, The Agnew Clinic 1889