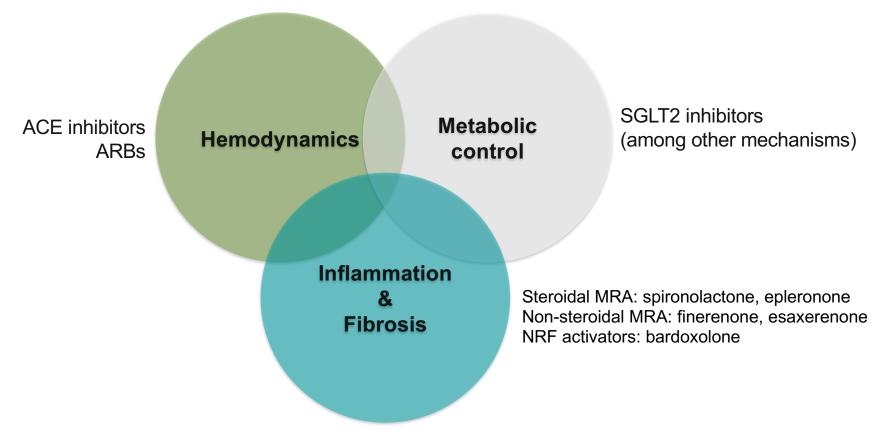

CHFS & JACC HF Plenary Session

Heart - Kidney Interactions: Convergence of Mechanisms of Disease, Therapeutics, and Care Pathways

Muthiah Vaduganathan, MD MPH Brigham and Women's Hospital



#1) Intersecting Mechanistic Pathways for CV and Kidney Disease Progression

Kolkhof P, et al. Mol Cell Endocrinol. 2012;350:310–317; Kolkhof P, et al. J Endocrinol. 2017;234:T125-T140.

MR Overactivation as a Central Driver of Inflammation and Fibrosis in the Heart and Kidneys

Hans Selye, 1907-1982, Born Vienna, Austria-Hungary Source: Wikipedia

MALIGNANT HYPERTENSION
PRODUCED BY TREATMENT WITH
DESOXYCORTICOSTERONE ACETATE
AND SODIUM CHLORIDE®

By Hans Selye, M.D., Ph.D., D.Sc., F.R.S.C., C. E. Hall, † M.Sc. and E. M. Rowley, B.Sc.

Montreal

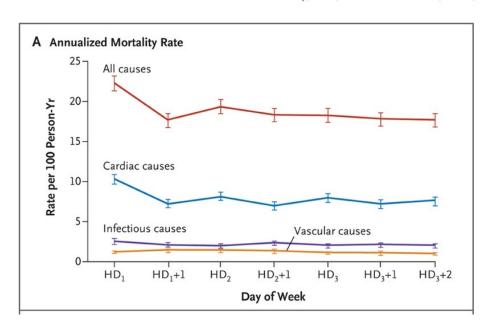
• Selye H, et al. Can Med Assoc J. 1943;49:88-92.

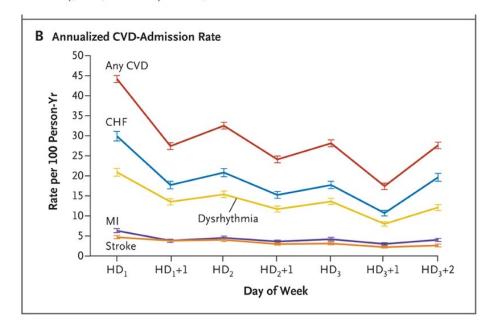
#2) CKD is a Powerful Driver of HF Events, and Vice Versa

UACR Top Predictor of HF Events in TRS-HFDM HF Risk Prediction Model

Table 2. TRS-HF_{DM} in the Derivation Cohort (Table view)

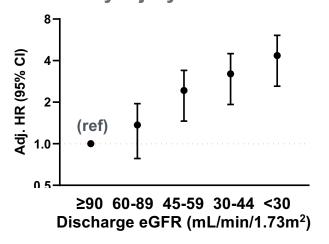
Risk Indicator	Adjusted HR (95% CI)	P Value	Points 2
Prior heart failure	4.22 (3.18–5.59)	<0.001	
Atrial fibrillation	2.26 (1.62–3.14)	<0.001	1
Coronary artery disease	2.06 (1.45–2.93)	<0.001	1
eGFR <60 mL·min ⁻¹ ·1.73 m ⁻²	1.85 (1.40–2.46)	<0.001	1
Urine albumin-to-creatinine ratio			
>300 mg/g	4.50 (3.18–6.36)	<0.001	2
30–300 mg/g	2.08 (1.50–2.87)	<0.001	1

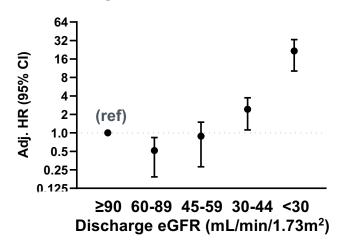

Berg DD et al. Circ 2019


Longer Interdialytic Interval in ESKD Linked with Excess HF Events

ORIGINAL ARTICLE

Long Interdialytic Interval and Mortality among Patients Receiving Hemodialysis

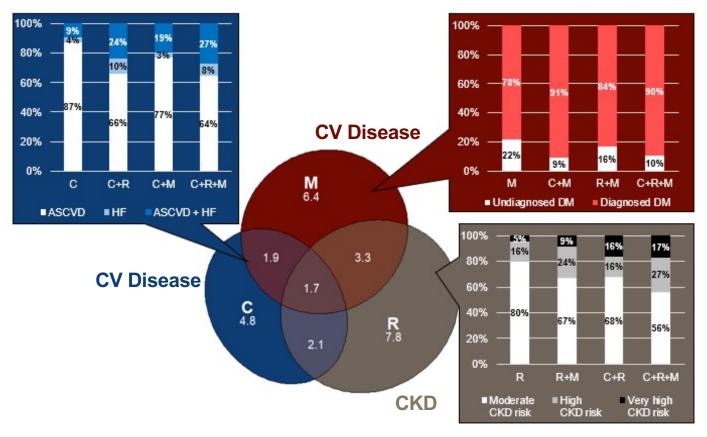

Robert N. Foley, M.B., David T. Gilbertson, Ph.D., Thomas Murray, M.S., and Allan J. Collins, M.D.



Post-Discharge Risks of AKI and Dialysis after Hospitalization for HF

Post-Discharge Risks of Acute Kidney Injury over 1 Year

Post-Discharge Risks of Dialysis/ESKD over 1 Year

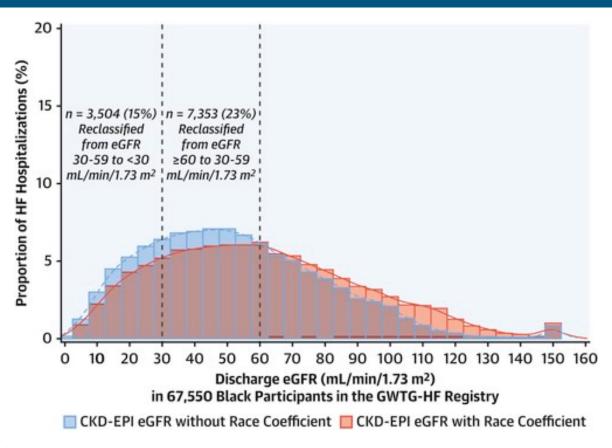


By 1-year, 7% of patients had been readmitted for AKI and 5% for dialysis/ESKD

Lower discharge eGFR (per 10 mL/min/1.73 m² decrease) was independently associated with increased readmission for AKI (adjusted HR 1.20[1.15-1.25]) and progression to dialysis/ESKD (adjusted HR 2.22 [1.93-2.55])

Vaduganathan M et al. In Development

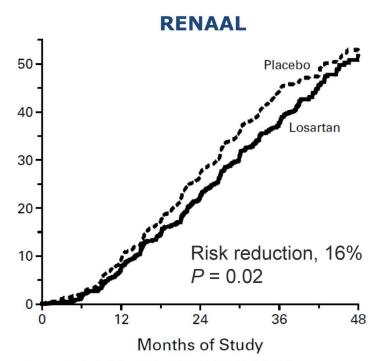
#3) Frequent Overlap of Cardio-Renal-Metabolic Conditions

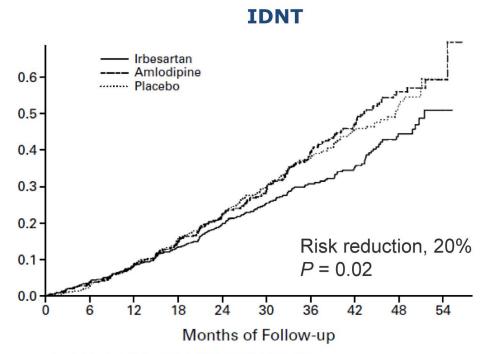

NHANES Data (2015-2020)

Age <65 years
CKD+T2D is the most
frequent dyad in younger
and middle-aged
individuals

Age ≥65 years
CKD+CVD is most
common in older people.

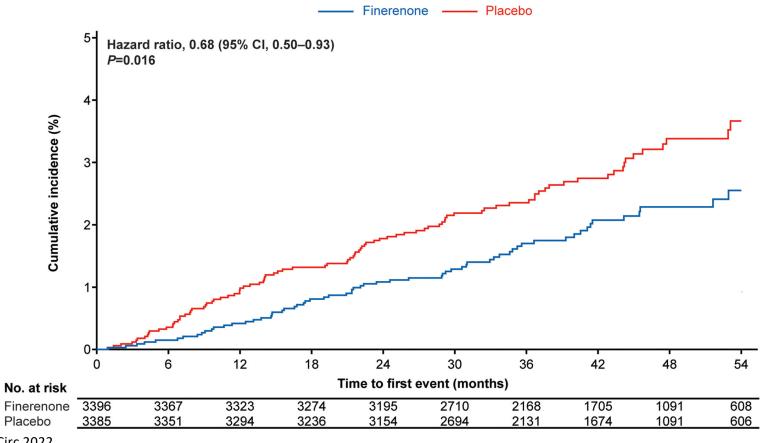
Ostrominski JW et al. In Development


New Race-Free eGFR Calculators Expand Prevalence of CKD in Black Individuals

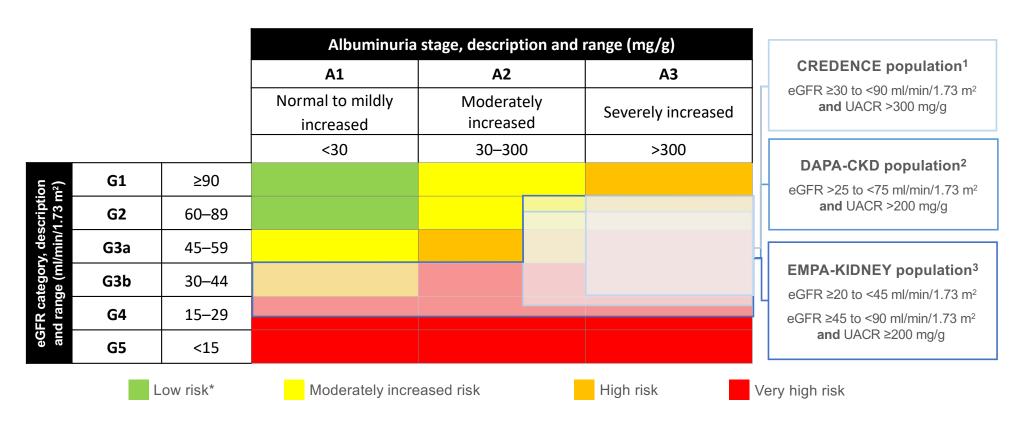

Patel RB et al. JACC 2021

#4) Therapies to Treat One Disease Prevent New Diagnosis of the Other

Doubling of serum creatinine, ESKD, or death



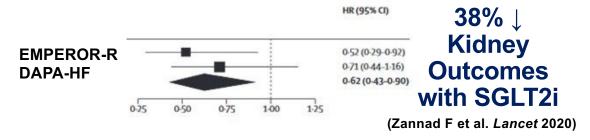
Brenner B, et al. N Engl J Med. 2001;345(12):861-869.

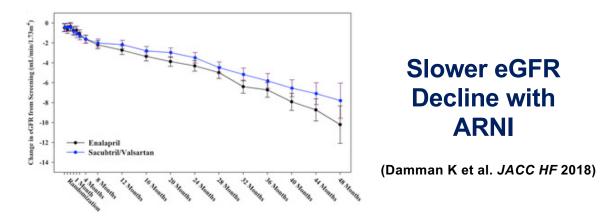

Lewis EJ, et al. N Eng J Med. 2001;345(12):851-860.

Non-Steroidal MRA Finerenone Reduces Incident HF in Diabetic Kidney Disease

Filippatos G et al. Circ 2022

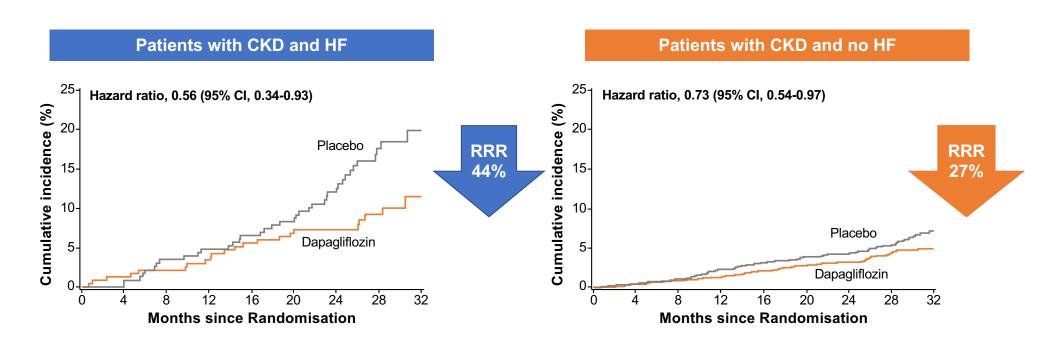
SGLT2i Reduce HF Risk across the Spectrum of CKD

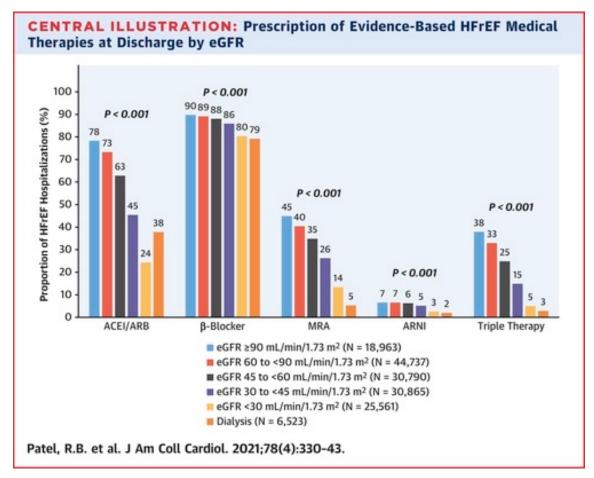

Adapted from Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Kidney Int Suppl 2013;3:1


*If no other markers of kidney disease, no CKD

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urine albumin-to-creatinine ratio

1. Jardine MJ et al. Am J Nephrol 2017;46:462; 2. ClinicalTrials.gov. NCT03036150 (accessed April 2019); 3. ClinicalTrials.gov. NCT03594110 (accessed April 2019)

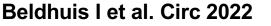

Newer HF Therapies Slow Kidney Disease Progression


Recent therapies in HF have been shown to slow kidney disease progression

DAPA-CKD: dapagliflozin reduced the risk of all-cause mortality in patients with both CKD and HF

CI, confidence interval; CKD, chronic kidney disease HF; heart failure; HR, hazard ratio; RRR, relative risk reduction McMurray J et al. *JACC Heart Fail* 2021,9:807–820

The Risk-Treatment Paradox in HF&CKD

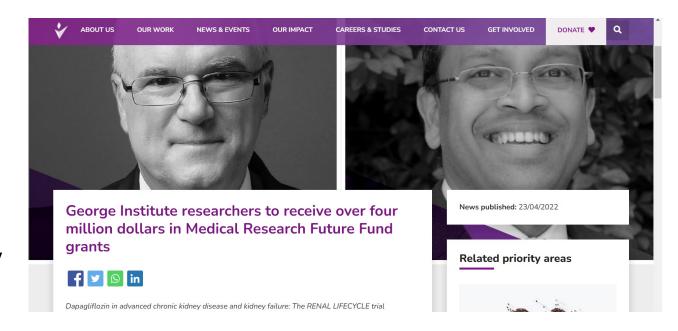


Patients with comorbid HF & CKD face high risks of in-hospital mortality, but are less likely to be treated with evidence-based medical therapies

Limited Evidence-Based Strategies Available to Attenuate Risk in HF and Advanced CKD

Scientific Evidence			Higher	Scientific Evidence		
Weak/Absent	Moderate	Strong	Risk	Strong	Moderate	Weak/Absent
ACEI SGLT2I Vericiguat ARB H-ISDN MRA Digoxin ARNI Ivabradine BBL Omecamtiv-Mecarbil			Stage 5 eGFR < 15 mL/min/1.73m ²			ACEI SGLT2I Vericiguat ARB H-ISDN MRA Digoxin ARNI Ivabradine BBL Omecamtiv-Mecarbi
IRNI GLT2i Jmecamtiv-Mecarbil Vericiguat H-ISDN vabradine Digoxin	ACEI BBL MRA ARB		Stage 4 eGFR 15-29 mL/min/1.73m ²	ACEi SGLT2i Omecamtiv-Mecarbil Vericiguat Digoxin	ARB MRA	ARN BB H-ISDI Ivabradin
Omecamtiv-Mecarbil Vericiguat H-ISDN Ivabradine Digoxin	ARB	ACEI ARNI SGLT2I MRA BBL	Stage 3B eGFR 30-44 Stage 3A eGFR 45-59 mL/min/1.73m ²	ACEI ARNI SGLT2i MRA BBL ARB Omecamtiv-Mecarbil Vericiguat Digoxin H-ISDN Ivabradine		
Omecamtiv-Mecarbil Vericiguat H-ISDN Ivabradine Digoxin	ARB	ACEI ARNI SGLT2I MRA BBL	Stage 2 eGFR 60-89 mL/min/1.73m²	ACEI ARNI SGLT2I MRA BBL ARB Omecamtiv-Mecarbil Vericiguat Digoxin H-ISDN Ivabradine		
Omecamtiv-Mecarbil Vericiguat H-ISDN Ivabradine Digoxin	ARB	ACEI ARNI SGLT2i MRA BBL	Stage 1 eGFR ≥ 90 mL/min/1.73m²	ACEI ARNI SGLT2i MRA BBL ARB Omecamtiv-Mecarbil Vericiguat Digoxin H-ISDN Ivabradine		

Dedicated Trials of HF + CKD Overlap: MIRACLE



n=500; follow-up over 12 weeks

- AZD9977 Dose A + dapagliflozin 10 mg
- AZD9977 Dose B + dapagliflozin 10 mg
- AZD9977 Dose C + dapagliflozin 10 mg
- Dapagliflozin 10 mg

SGLT2i Being Studied in Advanced CKD or Kidney Failure: The RENAL LIFECYCLE Trial

- Global, investigatorinitiated randomized trial
- n=1,750
- Primary outcome:
 Death, HF, or Kidney
 Failure

#5) New Care Pathways in Cardio-Renal-Metabolic Care: Combination Medical Therapy

CKD "Triple Therapy"

- ACEi/ARB
- Non-Steroidal MRA
- SGLT-2 Inhibitor
- Endothelin receptor antagonist
- GLP-1RA

HFrEF & HFmrEF

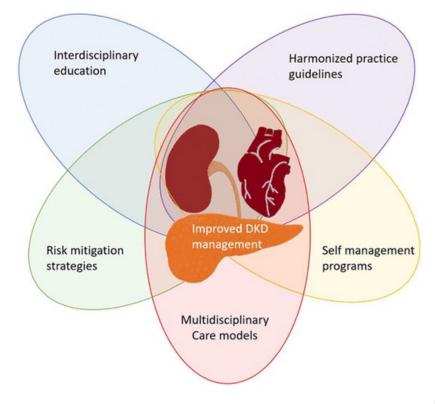
"Quadruple Therapy"

- β-blocker
- ACEI/ARB/ARNI
- Steroidal MRA
- SGLT-2 Inhibitor

#5) New Care Pathways in Cardio-Renal-Metabolic Care: Combination Medical Therapy

Circulation: Cardiovascular Quality and Outcomes

Volume 13, Issue 11, November 2020 https://doi.org/10.1161/CIRCOUTCOMES.120.007264



CARDIOVASCULAR PERSPECTIVE

Cardio-Renal-Metabolic Care Models

Toward Achieving Effective Interdisciplinary Care

Janani Rangaswami, MD (D), Katherine Tuttle, MD, and Muthiah Vaduganathan, MD, MPH

Heart - Kidney Interactions Presented by Muthu Vaduganathan

- HF and CKD share common mechanistic pathways for CV and kidney disease progression
- Worsening disease status of one condition forecasts heightened risk of exacerbation of the other
- HF and CKD are highly overlapping in clinical practice
- Common therapies have been shown to be efficacious in the management of many patients with HF and CKD
- Current evidence base and care strategies are limited for those with advanced CKD (but that is changing!)

